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Abstract

This dissertation explores multiscale discriminant basis selection, as well as the improve-
ment of classification reliability through context-dependent integration of soft decisions.
These methods are applied to texture and radar signature classification, document image
segmentation, and human face recognition.
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Preface

A successful pattern recognition scheme starts with efficient extraction of
the most discriminant information elements from various, possibly imprecise,
sources, followed by an intelligent combination of this information in a context-
dependent framework of low complexity.

Conventional multiscale basis selection and feature extraction based on
compression- and approximation-based criteria are not necessarily the best ap-
proaches for classification and segmentation purposes. Instead, a class separabil-
ity based approach is preferable. In this dissertation, we explore methodologies
for lower-(iimensional adaptive multi-scale discriminant basis selection. Depend-
ing on the task, these methodologies are applied to local windows or to the whole
pattern. Our tools in this analysis are derived from theories of wavelet packets
and multi-scale local bases on the one hand, and from the statistical theory of
discriminant cluster analysis on the other hand. The goal is to find efficient
multi-scale representations that yield maximum between-class separations and
minimum within-class scatters.

We also investigate the effectiveness of soft decisions in representing the

vagueness, uncertainty and imprecision of the classification sources. Based on
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the principle of least commitment in designing pattern recognition and consensus-
theoretical concepts, we try to improve the reliability of our classification system
through integration of soft decisions obtained from various observations and/or
sources. The combination of decisions is based on the discrimination power of
each source and its relevance to the current observation. We use ideas from
consensus theory, fuzzy neural learning, and evidential reasoning.

Our methods of multi-scale local/global basis selection and context-dependent
decision integration are applied to in several different domains, including texture
and document image classification and segmentation, radar signature classifica-
tion, and human face recognition. The results show that superior or highly
competitive performance can be obtained using small featulfe sets and simple
classifiers. The resulting systems are typically of low complexity and, since no
iterative computations are involved, most of the calculations can be done in
parallel. The proposed ideas can be extended in several directions and can be

applied to many pattern recognition and segmentation tasks.
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Chapter 1

Introduction

1.1 Introduction

Pattern recognition is the study of theories and algorithms for automating the
process of recognition through efficient representation of relevant information
and its analysis using intelligent schemes. The success of pattern recognition
systems depends not only on the power of the data processing algorithm, but
also on the proper representation of input data so that all the salient aspects
of data for the specific task at hand are captured and utilized while all the ir-
relevant information is discarded. With a poor knowledge representation, even
a powerful and sophisticated algorithm may give inferior results. Improvement
in efficiency of data representation may achieve more benefit with less effort.
Another fact which is sometimes overlooked is the significance of managing in-
termediate results and decisions, in terms of representing or saving them in
the right format so that a minimum amount of information is lost as far as
end-to-end performance is concerned. One of the most important principles in
designing pattern classification schemes is the principle of least commitment,
stated by Marr [59], which simply says “don’t do something that may later
have to be undone”. This principle is consistent with utilizing soft decisions as
intermediate results and carrying them along until a crisp decision is required.

A general schematic of a context-dependent classification/recognition process
is shown in Figure 1.1. The process starts with making a set of observations
that can be ordered in time or space, possibly as results of windowing. In

some applications only a few observations may be available. The first step
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Figure 1.1: Context-dependent classification and recognition using
decision integration.

is to find an effective and appropriate representation of the signal or image,
which based on a given criterion, represents only the most relevant information
in a compact form. The economy of clues in humans’ recognition, and the
fact that classification systems with small numbers of parameters have better
generalization, are computationally more cost-effective and also can be trained
and adapted faster, are motivations for efficient feature extraction techniques.

Feature extraction can also be thought of as, or be replaced by, measurements
from various sources. These sources in general may be imprecise with certain
levels of reliability or significance. Based on a consensus rule and an objective
performance measure one needs to combine information or decisions provided
by various sources/features to obtain more reliable performance. This requires
an objective evaluation of decisions obtained from individual sources in terms
of their impreciseness, uncertainty, or reliability.

Also attached to the concept of decision integration is the idea of incor-




porating context in the final decision. The context can be defined and used
in a temporal or spatial sense or as any additional side information. Utilizing
spatial/temporal context requires another level of decision integration using de-
cisions obtained in a “neighborhood” around current observations based on their
objectively defined relevance to the current data or decision.

In this thesis we investigate general methods of pattern classification through
adaptive multi-scale local basis design. We also investigate the improvements
obtained as a result of using soft local decisions as opposed to hard decisions and
we link this idea to fuzzy neural networks, soft decision integration and context-
dependent evidential reasoning. Our methodology is based on the following
objective and observations.

Objective: The objective of this study is to develop a fairly general pattern
and signal classification and segmentation scheme that is highly robust to signal
and pattern distortions and can provide competitive results with low complexity.
Our main applications of interest are document image processing, texture anal-
ysis, radar target classification, and face recognition. We will test our proposed
schemes on these tasks and compare our results with other methods.

Observations: There are several primary observations that can lead us
toward a reasonable approach to achieving the above objective:

1. Best Representations for Approximation or Discrimination. The
best and most compact representation of a set of signals for compression or
approximation purposes may not be appropriate for classifying them [2]. For
discrimination purposes, instead of the description length, entropy, or rate dis-
tortion, the criterion should be class separability. In other words, we should seek
a small-dimensional representation space with maximum discrimination power.

In a feature space with high discrimination power, within each class the feature




points show small variation but feature points from different classes are highly
separated. The most discriminating features may or may not correspond to high
energy content or to major principal components of the signal(s).

2. Multi-scale Representation and Classification: Multi-scale signal/pattern
representations and multi-scale classification have been found to be very effec-
tive in many signal processing applications ranging from signal compression
and coding systems to pattern recognition schemes. Motivated by the success
and plausibility of wavelets in classification systems, we will study appropriate
choices of local basis functions for the detection, classification or segmentation
of signals and images. The goal is to build, from a library of modulated wave-
forms, the best set of discriminant basis functions relative to which the given
collection of signals shows the largest class separability which in turn results in
simple and efficient algorithms for classification.

3. Ambiguity/Impreciseness in Local Decisions: In many signal/image
classification and segmentation applications, because of a variety of constraints
we have to base our decisions on local, incomplete or noisy views of the desired
pattern. Therefore, there is usually some ambiguity, imprecision or fuzziness
associated with our local decisions. In some applications the fuzziness is inherent
to the problem and is not necessarily due to noisy or incomplete data. In such
cases no hard decision can be accurate, and therefore it is more appropriate to
use soft decisions to reflect mixed memberships. Expressing all initial decisions
using real-valued soft decision vectors, one has to find a way to reduce their
uncertainty and reach an acceptable confidence level using a set of consensus
rules.

4. Incorporating Context Information through Decision Integration:

The effective use of context information in human perception is one of the key




sources of its strength. But using context information in computer vision and
pattern recognition efficiently is not a trivial problem. Many pattern recognition
schemes attempt to identify relevant context information from different sources
and incorporate it in their final decisions. The improvement due to the use of
context information becomes more noticeable when primary decisions are im-
precise due to a local/incomplete view of the patterns. The integration of soft
local decisions over a “context area” within and across scales can reduce the

level of uncertainty or increase the confidence of final decisions.

The organization of this dissertation is as follows. In the first two chapters
we discuss some new ideas for pattern recognition in a general and analytical
form. In the following three chapters we investigate the results of applying these
ideas to various signal and image processing tasks.

Chapter 2 talks about best local/global discriminant basis selection and fea-
ture extraction. In this chapter we study multi-scale discriminant feature ex-
traction for classification and segmentation purposes. These discriminant bases
should be designed so that maximum separability of clusters in the feature space
can be achieved using small-dimensional feature vectors. Depending on the task
one may look for best features based on local windows on the signal or image, or
for global features using all the data points in a signal/pattern. For segmenta-
tion tasks, for acceptable localization of region boundaries, one has to use small
local windows and the challenge is to obtain consistent results with a limited
and sometimes insufficient view of the signal/pattern. On the other hand, for
recognition and classification of objects with major macroscopic structure, in
order to capture all the geometrical relationships between object components,

one may need to view the signal as a whole.




Chapter 3 focuses on the utilization of soft decisions and context-dependent
decision integration rules. This chapter discusses methods of finding a consensus
among a set of experts or imprecise information sources with different levels
of reliability. Integration of spatial/temporal context information based on a
relevance function is also discussed. The ideas presented in this chapter are based
on evidential reasoning and similarity-based fuzzy decision systems discussed in
the literature. After discussing our analytical proposals we test them on a variety
of applications.

Chapter 4 presents results of applying multiscale discriminant analysis to
some real 1-D and 2-D signal classification problems. To test our method of
classifying 1-D signals we use a set of low-resolution radar signatures for au-
tomatic target recognition. Then we investigate the effectiveness of applying
similar methods to classification and segmentation of 2-D patterns/images, for
which we use a set of texture images. The results of these analyses are compared
to those using existing wavelet-based classification systems.

Chapter 5 treats layout-independent document page segmentation using adap-
tive multiscale discriminant features. We present an algorithm for layout-independent
document page segmentation based on document texture which makes use of
multiscale feature vectors and fuzzy local decision information to overcome the
shortcomings of previous segmentation approaches when applied to complex doc-
uments. Multiscale feature vectors, computed using a wavelet packet tree which
is designed based on document domain specific information, are classified locally
using a neural network to allow soft/fuzzy multi-class membership assignments.

Chapter 6 focuses on analysis and recognition of human faces. In this chap-
ter the discriminatory power of various human facial features is studied and a

new scheme for Automatic Face Recognition (AFR) is proposed. The first part




of the chapter focuses on the Linear Discriminant Analysis (LDA) of different
aspects of human faces in the spatial as well as wavelet domains. This anal-
ysis allows us to objectively evaluate the significance of visual information in
different parts/features of the face for identifying the human subject.

The LDA of faces also provides us with a small set of features that carry the
most relevant information for classification purposes. The features are obtained
through eigenvector analysis of scatter matrices with the objective of maximizing
between-class and minimizing within-class variations. The result is an efficient
projection-based feature extraction and classification scheme for AFR. Although
all of the face recognition experiments in this section are performed at a single
scale, the underlying LDA-based feature extraction ideas can also be applied to

wavelet decompositions.

1.2 Summary of Contributions

This dissertation reports the following new contributions ranging from analytical

results to new applications:

¢ Discriminant Local Basis Design: The design of local bases for best dis-
crimination performance using separability criteria; the application of separa-
bility measures for best basis selection or composition from an orthogonal or

redundant dictionary of local waveforms.

e Context-Dependent Multisource Soft Decision Integration: Utilization
of a consensus rule that integrates soft decisions based on their discrimination
power and exploits spatial/temporal context using a corresponding relevance

criterion.

o Wavelet Packet Based Layout Independent Document Page Segmen-

tation: The application of texture-based adaptive multiscale features using




wavelet packets along with context-dependent soft decision integration for seg-

mentation of document pages with complex layouts.

Discriminant Analysis and Recognition of Human Faces: The applica-
tion of linear discriminant analysis to objective analysis of human facial features
and automatic face recognition using a simple projection-based method that uti-
lizes separability measures for feature extraction and multisource soft decision

integration.

Beside these contributions, competitive results in automatic radar target recog-
nition and texture segmentation using very small multiscale feature sets are also

presented.




Chapter 2

Multi-scale Discriminant Features

2.1 Introduction

Classification of patterns as performed by humans is usually based on a small
number of important attributes which often have multi-scale organizations. In
practice we are usually confronted with pattern recognition tasks where physi-
cally or logically relevant information is not sufficiently well defined and under-
stood. In such applications there is a need to devise algorithmic approaches to
finding and evaluating a set of multi-scale classification attributes that show the
maximum discriminatory potential in a small-dimensional feature space.

Recently the application of wavelets and multi-rate filter banks [70, 51] to
multi-scale feature extraction has received significant attention. Wavelet-based
features have been shown to be efficient representations for detection, classifi-
cation and segmentation of 1-D signals, e.g. speech, music, and other acoustic
or radar transients [51, 26, 25]. Successful texture and image analysis schemes
based on wavelet or Gabor transforms have also been proposed [44, 13, 82]. Ex-
amples of texture and image segmentation using wavelet packets are given in
[55, 29]. In addition to engineering tests, the evidence that some multi-resolution
and spatial frequency analysis is performed by our visual and auditory systems,
demonstrated by psychophysical studies [83, 93], shows the biological plausibility
of wavelet-based methods.

Motivated by the success and plausibility of wavelet-based classification sys-
tems, in the first part of this chapter we review the basic methodologies for

local basis selection found in the literature. We then present our proposed




discrimination-based signal decomposition scheme. Our objective is to build,
from a library of modulated waveforms, a set of suitable basis functions relative
to which the given collection of signals shows the largest class separability, which
in turn results in simple and efficient algorithms for classification. We investigate
appropriate algorithms for both orthogonal bases and redundant dictionaries of
local functions.

Since classification systems with small numbers of parameters provide better
generalization and adaptation performance at lower computational cost [34], we
are interested in dimensionality reduction techniques. It is usually advantageous
to sacrifice some information in order to keep the number of system parameters
to a minimum. With this observation and our suggested basis selection idea, we
also study the issue of optimal extraction of low-dimensional feature vectors from
multi-scale decompositions of signals. Qur approach focuses on the exploitation
of class-specific differences obtained through inspection of a pre-defined class
separation [34, 24] attainable from the multiscale decomposition, and on finding
a linear map that provides the smallest set of features relative to which the
given collection of signals shows the largest class separability. This in turn
results in simple and efficient classification schemes. Although most of our
discussions are about wavelet packet bases, the suggested basis selection method
can be applied to other tree-structured local basis functions, e.g. libraries of
local sine/cosine functions [19], and also to other tasks such as classification
of acoustic transients and biomedical and satellite images. It is shown that
simple search techniques can be devised if the basis functions are orthogonal
and can be put in a tree structure. The multi-scale dimensionality reduction
idea can be used for both orthogonal and non-orthogonal libraries of local basis

functions, e.g. local sine/cosine functions, Gabor functions, and even composite
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and redundant basis libraries [57].

The idea of designing local bases using class separability criteria has been
studied concurrently by Saito and Coifman [72]. Their proposed algorithm is
based on local energy features and additive discrimination costs and their tests
are based on synthetic data. Part of this dissertation reports the results of
similar but independent research which is applicable to non-additive costs, non-
orthogonal bases, and arbitrary local features. Also, in the next few chapters the
results of tests on several real signal and image classification and segmentation
tasks are provided. Our approach to adaptive multi-scale local basis design is
general in the sense of its applicability to different signal and image classification
tasks.

The organization of this chapter is as follows:

In Section 2.2, a brief introduction to multi-scale signal representations with
emphasis on wavelet packets is given. Several known [34, 24] measures of class
separability are summarized and a new separability-based tree-structured local
basis design is suggested in Section 2.3. Section 2.4 describes a related but
independent idea of dimensionality reduction of multi-scale features, followed
by its extension to redundant and non-orthogonal basis dictionaries, in Section
2.5. Some comments on multi-scale and context-dependent classification and

segmentation are provided in Section 2.6.

2.2 Multi-scale Signal Representations

The optimal representation of signals in the time-frequency plane (or the so-
called Phase Plane [19, 56]) is an active area of research, where the optimality is
a task-dependent issue. In most time-frequency decompositions, signals are pro-

jected onto a set of waveforms or time-frequency atoms [57]. A general family

11




of time-frequency atoms can be generated by scaling, translating and modulat-
ing a single window function g(¢) € L%(R), where ¢(t) is a real, continuously

differentiable and O(ﬁ) function satisfying

gl=1; and [g(t) #0; and g(0) #0; (22.1)

Therefore any element of the dictionary is of the form

t—u

galt) = s 2g(F Y )i (2:2.2)

s
and can be identified by the triple v = (s,£,u) € T' = (Rt x R2), where s,¢
and u represent scaling, modulation, and translation factors, respectively [57].

These waveforms form a dictionary
D={g,(t):yeT} (2.2.3)

of basis functions which may or may not be orthogonal or even complete and
may or may not have a tree structure. A function/signal is decomposed in a
dictionary D by its projections onto the elements of D. The waveforms {g., }
must be selected adaptively based on the local properties of the desired signals,
so that the expansion coeflicients provide the desired information most “effi-
ciently”. The best decomposition strategy also depends on the characteristics
of the dictionary.

The smallest possible dictionary is a basis of H, but general dictionaries
are redundant families of waveforms/vectors. Examples of orthogonal bases
are Wavelet Packet (WP) and Local Trigonometric Basis (LTB) functions; see
Figure 2.1. On the other hand, the general family of Gabor functions forms a
redundant dictionary of bases. In the following we review the theory of best
signal decompositions using tree-structured local bases, where we focus on WP

bases. Also, we review the concepts of best decompositions in the framework of
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Figure 2.1: Partitioning of the phase plane for (a) wavelet packet
basis (adaptive windowing along frequency axis); (b) local trigono-
metric basis (adaptive windowing along time/space axis)

redundant dictionaries. We then extend the idea of best approximation-based

multiscale representation to finding the most discriminatory representations for

classification purposes.

2.2.1 Multiscale Orthogonal Bases: Wavelets

Wavelet transforms [56, 22] and their generalized form, called wavelet packets,
provide signal analysis through smooth partitioning of the frequency axis. The
waveforms in WT and WP dictionaries have a tree structure and they form an
orthonormal basis for L?(R.).

We begin with an exact Quadrature Mirror Filter (QMF) [19] 2(n) satisfying
S h(n—2k)h(n—26) =&,  and S h(n) =2 (2.2.4)

Let g(k) = (—1)*A(k + 1) and define the mappings F; from £3(Z) onto
ué2(2z)»
Fo{s}(i) = 22 h(k — 27) (2.2.5)

Fi{s}(i) = zz ok - 2)
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which can be considered as convolutions followed by down-sampling operations.
The map F(s) = Fo(s) ® Fi(s) € £2(2Z) @ £*(2Z) is orthogonal, and satisfies

alias cancellation and perfect reconstruction conditions

FoFr=FF;r =1 (2.2.6)
FF:=FoFr=0 (2.2.7)
FiFo+FFy =1 (2.2.8)

where F§ and Fy are the adjoint (i.e. upsampling and anticonvolution) opera-
tions corresponding to Fy and Fj respectively. This mapping is the basic block
of all wavelet transform and wavelet packet trees [19]. Application of F' to each
node/subband s projects s onto two orthogonal subspaces Fy(s) and Fi(s) which
correspond to the smoothed version of s and the remaining details respectively.
Thus each node in the tree represents a subspace of its parent’s space and each
subspace is the orthogonal direct sum of its two children. The functions g and
h represent the low-pass and high-pass filters, respectively. Also H1 and G1 are
the frequency responses of the corresponding 1D filters, used in the filter bank
implementation of the system, shown in Figure 2.2. In this Figure V and W are
orthogonal subspaces generated at each level of decomposition.

In the wavelet transform the decomposition process is iterated on the low-
frequency component and at each iteration the high-frequency coefficients are
retained intact. These iterations result in a pyramidal tree structure, which al-
lows signal analysis by dyadically partitioning its spectrum more and more finely
toward the low frequency regions. While for many classes of applications and
signals this pyramidal multiresolution representation is appropriate, for others it
becomes restrictive. For many classes of signals, e.g. textures, document images,

and many acoustic signals, where a major part of the energy or “information”
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Figure 2.2: Computing the pyramidal wavelet transform by applying
the Fy and F) operations and multirate filtering. The filter-bank
implementation (left); the tree structure (right).

lies in the mid to upper frequency ranges, the pyramidal wavelet transform is
not suitable because, regardless of the spectral characteristics of the signal, it
only allows finer and finer resolutions toward the lower frequency bands [29, 55].
On the other hand, fast wavelet packet analysis algorithms permit us to perform
adaptive Fourier windowing of a signal by an optimal and smooth partitioning
of the frequency axis.

Define the following sequence of functions:

Wan(z) = V3 Tx h(k)Wa(22 — )
Wania(z) = V2 5k g()Wa(22 — )

(2.2.9)

A Wavelet Packet Basis of L?(R) is any orthonormal basis selected from the
functions 2%/2W, (2%t — j) [19]. The three parameters {k,n,j} have physical in-
terpretations of scale, frequency (or sequency), and position, respectively. Thus
each library of Wavelet Packet (WP) bases can be organized as a subset of a
full binary tree. In WP analysis both low- and high-frequency components: of
the signal can be decomposed at each iteration, and thus the corresponding WP
tree can grow in different directions.

Wavelet packet expansions correspond algorithmically to adaptive subband
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Figure 2.3: Filter bank structure for computing wavelet packets
(top). An example of energy-based non-uniform subband decom-
position (bottom).

decompositions of signals and images using multi-rate filter banks which are
widely used in signal compression systems [89, 2, 68]; see Figure 2.3. In most
applications of wavelet analysis to multi-dimensional signals and images, for
simplicity, the signal space is assumed to be a separable Hilbert space and in
filter bank implementations of 2-D wavelet packets separable filters along the

row and column directions are used, i.e.
Hy(wz,wy) = H(wg)- H(wy) Hip(weywy) = H(wg) - G(wy X2.2.10)
Hu(wz,wy) = G(ws) - H(wy) Hip(weywy) = G(wz) - Glwy)

where H and G are the 1-D low-pass and high-pass filters respectively, defined
above, and the first and second subscripts show the low-pass or high-pass char-

acteristics of the filters in the row and column directions. Figures 2.4 and 2.5
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Figure 2.4: 2-D wavelet transform: the partitioning of the 2-D spec-
trum, the pyramid structure of the tree, and the filter-bank imple-
mentation.
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Figure 2.5: Multirate separable filter bank structure for computing
two-dimensional wavelet packets (left); a 2-D wavelet packet tree,
where each node can be decomposed into four child nodes (right).

show examples of the filter-bank implementations of the 2-D separable WT and
WP, respectively.

Another way of optimally representing signals in the time-frequency plane is
to perform adaptive smooth partitioning of the temporal/spatial axis, as illus-
trated in Figure 2.1. This leads to the “dual” or “conjugate” of wavelet packets,
the so called “Local Trigonometric Basis”(LTB) functions [19]. It can be shown
that it is possible to partition the real line into disjoint intervals smoothly and
construct orthonormal bases on each interval. Dyadically partitioning the time

axis forms a binary tree of local bases that can be adaptively designed to opti-
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mize a predefined cost function. This idea has been studied in [19] in the context
of best local basis selection using an entropy criterion for compression purposes.

Wavelet Packet and Lolcal Trigonometric Basis functions are examples of
tree-structured orthogonal basis functions. In the following we focus on wavelet
packets but most of the results hold equivalently for LTB’s or any other tree
structured local basis. In particular, all results and algorithms are applicable to
M-ary wavelet packet trees [19]. Since keeping all the coefficients in a WP tree
leaves us with a redundant set, one asks about the optimal tree structure for a
given task. In other words the flexibility of a WP tree enables us to form the
WP tree based on a given task-dependent criterion.

In designing wavelet packet trees, one either takes a divide and conquer
approach, starting from the most refined sub-space decomposition and moving
upward in the tree by merging “adjacent” nodes “appropriately”, or starts from
the root and performs iterative decomposition of each node into its subspaces
if this is “appropriate”. In either case the “appropriate” choice is based on a
pre-selected task-dependent criterion.

Let us consider the first approach. Using the fact that in wavelet packet
trees, at each level, subspaces are orthogonal, and considering the redundancy
between a parent node and its children nodes, one can evaluate the pre-selected
cost function for the parent node and for the combination of its children, and
by comparing the two values decide whether to retain the parent node or the
children. Continuing this test for all nodes and levels provides the tree structure
appropriate for the specific task based on the pre-selected criterion. The depth
of the tree is limited by complexity and other considerations.

Depending on the specific application, criteria can be used to build the opti-

mal wavelet packet tree. Coifman and Wickerhauser [19] have suggested the use
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of “entropy” as a measure of energy spread among the transform coefficients.
Let H be a Hilbert space. Let s € H, ||s|]| = 1 and let H = & H; be an

orthogonal decomposition of H. They define

(s, {H}) = =3 Ils:]]*In flsil|” (2.2.11)

the entropy of s relative to the decomposition {H;} of H, as a measure of the
distance between s and the orthogonal decomposition. For example, in the
LST library case, one compares the entropy of the expansions in two adjacent
windows to the entropy of the expansion in their union and picks the smaller one,
continuing the comparison with the selection made for the next pair, etc. Thus
the tree of basis functions is built so that maximum energy compaction among
the fewest coefficients is obtained. Thus, the “best basis” paradigm permits
a rapid (e.g. O(NlogN)) search among a large collection of tree-structured
orthogonal bases to find most compact representation.

For signal compression applications, Vetterli et al. [68] suggest the mini-
mization of the rate-distortion function [20] as a criterion for basis tree selec-
tion. This criterion is a compromise between description length and distortion
in a compression scheme such as vector quantization. The WP tree is designed
to minimize this function. This criterion seems to be appropriate for signal
compression and coding applications.

Also for signal analysis and classification problems dominance of energy con-

centrations in subbands X
E,=1/n)|X[n] — X,|? (2.2.12)

has been used as a criterion for further decomposition [51, 13], and the “Energy
Map” is used as a feature set. The idea behind this approach is the assump-

tion that the most interesting features come from high-energy components of
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the signal. Figure 2.3 also illustrated the idea of energy-based wavelet packet

decomposition.

2.2.2 Redundant Dictionaries

Although a signal can be completely characterized by its decomposition on an
orthogonal basis, any such basis may not be rich enough to represent all poten-
tially interesting microstructures. Asin human language, a limited dictionary of
words may suffice for expressing any idea, using composite words and sentences;
but utilizing a more extensive dictionary enables one to find more compact and
efficient ways of expressing ideas. There is an infinite number of ways to decom-
pose a signal/image over a redundant dictionary of waveforms. In fact, it can be
shown that in a finite-dimensional space, computing the optimal expansion of
signals using a redundant dictionary of waveforms is an NP-complete problem.
This justifies the use of suboptimal greedy algorithms. Thus an approximation-
based greedy algorithm called matching pursuit is proposed. The problem is to
find the optimal, i.e. most compact, decomposition of a signal f over a dictio-
nary of normalized waveforms/vectors D = {g,},er whose linear combinations
are dense in the signal space H. Matching Pursuit is a greedy algorithm that
successively approximates a signal f with orthogonal projections on elements of
D.

Let gy, € D . The vector/signal f can be decomposed into

f=<f9%> 90+ Rf (2.2.13)

where Rf is the residual vector after approximating f in the direction of g.,. The
iterative approximation is performed by successive selection of the dictionary
element closest to the decomposition residue at each step and computing the

new residual term. Let R°f = f and assume that at the k' iteration, R* f has
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already been computed. We choose g,, € D that best matches f
| < R*f, gy, > | = sup.er| < R*f, 9, > | (2.2.14)
and then project R*f onto g.,:
R f=RFf— < Rff g, > g, (2.2.15)

which defines the residue of the (k4 1)* order. The orthogonality of R**!f and

g, implies

IIRFfI2 = [|REFI1? = | < REf, 9y, > 0| (2.2.16)
n—1

f = Z < ka>g’)’k > gy + R f (2.2.17)
k=0

Thus R™f is the approximation error of f after n iterations. In fact the original
objective was to minimize this error for a fixed n. As part of our discrim-
inant analysis we will revisit this idea and exploit it for best discrimination
performance. Details about fast numerical computation of the matching pursuit

algorithm and its orthogonal version can be found in [57].

2.3 Discriminant Local Basis

Most of the proposed basis selection algorithms are tailored to provide compact
representations and effective signal compression. However, for classification pur-
poses a criterion based on the difference between the patterns/signals of different
classes, i.e. class separability, is preferable [28], because one may observe rela-
tively high energy subbands on which the desired signals are quite similar and
subbands of relatively low average energies that contain significant information
about the differences between the signals. On the other hand the average energy
and second central moments of the subbands may not be the only/best feature

set for classification. For example, higher-order moments may be used as part of
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a feature set and in such cases the decision criterion for further decomposition
at each level should also take those features into consideration.

One of the main ideas of this study is to investigate the effectiveness of a
separability or discrimination-based criterion for local basis selection. The pro-
cess of analysis compares projections of a set of signals onto waveforms of a
pre-selected library and picks up projections that contain the most discrimina-
tory information. This selection permits discrimination of signals to a specified
accuracy with the fewest waveforms. The tree structure selected based on class
separability may not be optimal or even sub-optimal for representing or approx-
imating individual signals and it does not even need to provide a “complete”
basis, as is required for some other tasks, e.g. compression, identification, and
modeling.

In the following we first review the basic ideas of class separability and its
measures and then use those measures as our criteria for basis selection from an

orthogonal or redundant dictionary of waveforms.

2.3.1 Class Separability Measures

In order to design an efficient classification system one has to select features
that are most effective in showing the salient differences between the signals, so
that signal clusters are well separated in the feature space.

Consider a collection of N signals {s;}}¥, from L different but known classes.
Feature extraction is a mapping from a high and possibly infinite-dimensional

signal space to a typically low-dimensional feature space:
T:s€S—VeR" (2.3.18)
The training set I' is a set of prelabeled observations

I'n = {(vi,l;)):i=1,..,Nand [; € {1,2,...,L}} or (2.3.19)
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Fs = {(vi, li) : Z = 17'“)N a‘nd li - [0’1]L}

where 'y and T'g correspond to training based on hard decisions or soft decisions
respectively. While a hard decision is a single label assignment, a soft decision is
in the form of a real-valued vector where each component of this vector represents
the closeness, degree of membership, or similarity between an observation and
the prelabeled observations in the training set.

For best feature extraction or evaluation we need a means of quantifying
the distance or separability of the clusters corresponding to different classes.
Let P(V|C)) be the conditional density function which represents the spread
of feature points v € V for each class C; defined in the feature space. For L
different classes we are seeking a measure of the distance or separation among

the L clusters represented by the P(V|C;)’s:
Sep(V,C) = d(P(V|C1), P(V|Cy), ..., P(V|CL)) (2.3.20)

Examples of quantitative measures of class separability (CS) are Bayes error,
variational distance, scatter matrix based measures, Bhattacharyya distance
and divergence rate [34, 24]. Bayes error is the best measure of separability of
distributions and for any selection of features it gives the minimum amount of
attainable classification error. For a two-class {C;, C;} problem with equal prior
probabilities and uniform misclassification cost and feature vector V', the Bayes

error can be simplified to
Jig = [ min(P(VIC:), P(V|C;))dV (2.3.21)

where the P(-|-)’s are conditional class density functions, shown in Figure 2.6.
One attempts to minimize this error over different choices of feature vector V.

For multiple-class problems Bayes error can be defined similarly by the areas of
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Figure 2.6: Class separability: (a) Bayes error; (b) within- and
between-class scatter

the regions where the conditional distributions overlap. Theoretically speaking
the Bayes error is the optimum measure of feature effectiveness, and despite its
computational complexity, its estimated value is a popular criterion.

The problem with divergence rate and its symmetric variation (J-divergence)

Divergence J;; = D(P(V|C)),P(V|C;)) (2.3.22)
P(v|C5)
= P(v|Cj)lo
e
J — DivergenceJ®;; = Ji;+ J;; (2.3.23)

as measures of discrepancy between conditional distributions [20] is that they
do not have metric properties. Also since divergence is defined for pairs of
distributions, when the number of classes is more than two one needs to consider
divergences for all pairs and use their summation:

d(P(V|Cy), P(V|Cy), ..., P(V|Cy1)) = Z DONPAE (2.3.24)

t=1:<j<L

Despite this fact and the computational complexity, divergence-based class sep-
arability measures are sometimes used as alternatives to Bayes error.

An elegant and yet simple way of formulating a criterion of class separability
is based on within- and between-class scatter matrices, which are widely used

in discriminant analysis [34]. The within-class scatter matrix (S,) shows the
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scatter of the sample vectors (V) of different classes around their respective
mean /expected vectors M;:
L
Sw =Y Pr{C=C}% (2.3.25)
I=1
where 5; = E[(V — M;)(V — M;)T|C)] represents the spread of feature points in
the %" class. Also one can define the between-class scatter matrix (S;) as the
scatter of the conditional mean vectors M; around the overall mean vector M:
L
Sy =3 Pr{C = C:}(M — M;)(M — M;)" (2.3.26)
i=1
In order to have good separability for classification one needs to have “large”
between-class scatter and “small” within-class scatter simultaneously. There
are several ways of defining a positive function as a measure of this combined

separability criterion [34]:

J' = (S, S) (2.3.27)
J? = In|S, 'S (2.3.28)
J® = tr(Sy)/tr(Sy) (2.3.29)

In our experiments J' is used but the same results hold for J?. We denote
the objective function computed over subspace V by Jv. A similar but simplified
version of this idea has been used in speaker identification and speech recognition

problems, where it is called the “F-ratio” [33].

2.3.2 Best Wavelet Packets for Discrimination

In this section we present our WP basis selection scheme which tries to find the
best WP tree for classification purposes. First we need to mention that in the
following we refer to each node as a subband or feature interchangeably although

one may compute more than one feature from each subband. The algorithm is
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based on a divide and conquer approach similar to the well-known Best WP
basis selection proposed by Coifman et al. [19], but there are some important

differences.

Algorithm

1. Select an appropriate wavelet/QMF filter or local sine/cosine transform.

Call the operation F'.

2. Let T® be the root node, let the iteration index n = 0, and go through the
following iterations. Each iteration involves a decision about decomposing

one node from the retained tree.

3. Perform one level of decomposition on each terminal node/subband p:

F(p) = C®) = {P P ey (2.3.30)

4. For each parent node/subband p and its children nodes {cﬁ” ) i=1,.,M }s
compute the corresponding feature sets. These feature sets are typically
computed through simple nonlinear operations and may or may not be

based on local energies.

5. Compare the Combined Class Separability (CCS) obtained using all tree
nodes T selected so far, with the parent node J(T™), p), to the same

CCS excluding node p but including all its children nodes J(T', C):

Tr+) = (70 py if J(T®™,p) > J(T™,C) (2.3.31)

Tn+1) {T™ C} if J(T(n),p)SJ(T(n)’Q)

In other words, we decompose a node p if this decomposition gives us

“additional” significant discrimination information.
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6. Repeat steps 3 — 5 for the updated tree; increase the iteration index (n —
n+1) until no further significant improvement of separation is observed by
decomposing the terminal nodes. One can terminate the iteration earlier

if the amount of achieved separation is larger than a preselected threshold.

7. Reduce the dimensionality of the feature vectors using a feature selection
method (e.g. Backward Elimination, Forward Selection, or Branch and
Bound) to sort the list of features in the order of their CS information

importance.

Splitting each subband increases both the within- and between-class scat-
ters, so it may or may not result in an increase of class separation as defined
in (2.3.27). However, since windowing is performed in the frequency domain, it
is more likely that such an increase will be observed at earlier levels of decom-
position rather than later stages where the subbands are too small to reliably
characterize the differences. This observation and the depth limitation described
earlier explain how the algorithm terminates.

Note that for the special case of additive separability cost, i.e.

N
J(VE) =5 J(Vi) (2.3.32)
i=1

(2.3.31) reduces to

TeH) = {T™,p} if J(p) > J(C)

T+ = (7MW ¢} if J(p) < J(C) (2.3.33)

which is consistent with [72]. The choice of additive cost may not be appropriate
especially when there is a dependency or statistical correlation between features.

For example, the combination of two features which carry significant but similar
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Figure 2.7: Computation of feature vectors for corresponding local
windows in all subbands.

discrimination information does not provide us with twice the discrimination
power.

Aside from the main idea of the algorithm, one can argue about the appro-
priate choice of the feature set for each node. Without claiming optimality, as a
reasonable choice, we use features based on central moments of the correspond-

ing subband signals, e.g.

1

(W) = W(Zw(f(x)—f;v)")”” (2.3.34)

Vo= {vi= p(Wi),vs = po(W;) /ps(Wi) i =0,1,.., Noubbands}

where W is the local window on the i*" subband. On each subband, f(z) and
fw are defined as the intensity value at location z and average intensity on
window W centered at z respectively, as shown in Figure 2.7. Depending on
the nature of the signal or image classification task, W can be a 1-D or 2-D
window. For segmentation tasks the window slides through the signal and at

each location it covers a part of the signal, whereas in classification tasks there is
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only one window covering the whole signal. For each subband or node, ps shows
the average energy whereas p3/p2 roughly represents the information about the

shape of the spectrum in that subband.

2.3.3 Separability and Dimensionality Reduction

In order to design a simple and efficient classification and segmentation scheme
one has to select features that are most effective in showing the salient differ-
ences between the signals, i.e. a selection that results in the best minimal set of
features in terms of the separability of the signal clusters in the feature space.
The reduction in dimensionality of the feature vectors can be achieved either by
selecting them or combining them so that maximum classification information
is retained. We start with the selection process and then we study Linear Dis-
criminant Analysis as a tool for obtaining the best linear combination weights.

After the full tree of wavelet basis functions is selected, to simplify the feature
vector, those nodes that do not actively contribute to the overall classification
performance can be discarded. With this elimination process the pruned tree
will no longer correspond to a “complete” basis, but completeness is not required
for analysis and classification purposes.

The simplest but most unreliable method of selecting feature subsets (of size
m < n) is to consider them individually and select from the top of the list of

features, sorted based on the cost for each feature alone.
Un ={uii=1,...,m: J(u;) > J(vj) Yv; € (V —Upn-1) (2.3.35)

This selection is optimal only if the features are independent and the cost func-
tion is additive [24]. In many applications neither is the case. On the other
hand, direct exhaustive search, even for moderate sizes of feature sets, is com-

putationally prohibitive. So depending on the tolerated complexity, one can use
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suboptimal Forward Selection or Backward Elimination methods, or so-called
Branch and Bound search [34, 24].

Iterative comparisons can be initiated from the complete set of features ()
by eliminating the one that has the least effect on the overall cost and continuing
the same elimination process for the remaining set until the minimum acceptable
cost or maximum affordable number of features is obtained [34]. We call this

stepwise process Backward Elimination:

Ve = Q= {v,v,...,0} (2.3.36)

VA = (VP —arg, min{J(V*) = J(VF = {v;}),0; € VF} (2.3.37)

Also, one can start with the selection of a single feature V! = {u;} that
results in the largest cost J(V!). Then, fixing V?, select from the remaining
features a V? = {{V*, {u2}} such that it provides the largest cost J(V?) and
continue to include the most effective combination [34]. This is called Forward

Selection:

Vo = Null (2.3.38)

VL = (VE argmax {J(VF, {v:}),v: € (2 — VF)}) (2.3.39)

One can also use variations of the so-called Branch and Bound method of
selecting the best subset of nodes/subbands [34, 24]. This approach, although
computationally more involved, can provide the optimal selection of nodes even
when there is considerable dependence among features across nodes. This al-
gorithm is a top-down search with backtracking which examines all possible
combinations without exhaustive search. It is based on the monotonic property

of the majority of feature selection criteria, namely for a nested set:

vy 5 v@5ye 5 | (2.3.40)
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JVO) > Jv@) > Jwve > . (2.3.41)

Just to illustrate the basic idea of pruning, the second approach is adopted
in the following. Using J as our class separability criterion the algorithm for
basis selection can be summarized as follows:

Unlike Mean Square Error(MSE), which is the most widely used criterion for
signal representation, class separability measures are typically invariant under
any non-singular, linear or non-linear, transformation. However, any singular
mapping used for dimensionality reduction results in losing some discriminating
information. Our objective is to find the mapping that for a given reduction in
space dimensionality provides the maximum class separability. In other words,
we are searching among all possible singular transformations for the best sub-
space which preserves class separability as much as possible in the lowest pos-
sible dimensional space, as illustrated in Figure 2.8. So we are seeking a linear

transformation A from R™ to R™ with m < n such that
A:XCR® - YCR™ (2.3.42)

A =argming {|Jx — Jyrx|} (2.3.43)

where Jx = tr(S%) and Jy = tr(SY) are separabilities computed over the X and
Y = ATX spaces respectively. Thus A optimizes Jy, i.e. minimizes the drop in
cost |Jx — Jurx| incurred by the reduction in the feature space dimensionality.

It can be shown that for such an optimum A
Nic{}i=1,..m,j=1,..,n (2.3.44)

where the AX’s and \Y’s are the eigenvalues of the corresponding separation

matrices SX and SY. This observation and the fact that

Jy =tr(SV) =3\, (2.3.45)
=1
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" Figure 2.8: Dimensionality reduction of the feature vectors obtained
from a balanced or pruned wavelet packet tree.

suggest that one can maximize (or minimize) Jy by taking the largest (or small-
est) m eigenvalues of SX. Following our earlier observations, and having deter-
mined the separation matrix, we perform eigenvalue analysis of the separation

matrix S¥ on the augmented database:
eig{S*} = {(,w),i=1,..,Ns =1, \; > hip1} (2.3.46)
To reduce the computational cost for large dataset sizes one can use the following
equality [78, 34]:
Spus = A S (2.3.47)

This shows that the u;’s and A;’s are generalized eigenvectors of {S;, S, }. From
this equation the A;’s can be computed as the roots of the characteristic poly-
nomial

1Sy — XiSw| =0 (2.3.48)
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and then the u;’s can be obtained by solving
(Sb - )\iSw)ui =0 (2.3.49)

only for the selected largest eigenvectors [78]. Note that the dimensionality m
of the resulting set of feature vectors is m < rank(S) = min(n, Ns — 1). Now

define
Alm)

{M,i=1,..,m< Ns—1} (2.3.50)

U™ = {u,i=1,..,m< Ns—1} (2.3.51)

so that Al™ and U(™ represent the set of m largest eigenvalues of S¥ and
their corresponding eigenvectors. Considering U™ as one of the possible linear

transformations 2 from R® to R™, with m < n, one can show that

Q = {U: XCR"=UTX=YCR® m<n) (2.3.52)

U™ = argmingeo{|Jx — Jurx|} (2.3.53)

where Jx = tr(SX)) and Jy = tr(SY)) are separabilities computed over the X
and Y = UT X spaces respectively. This means that U™ minimizes the drop
|Sep(X) — Sep(UT X)| in classification information incurred by the reduction in
the feature space dimensionality, and no other R® to R™ linear mapping can
provide more separation than U™ does; thus A = U,

Therefore, the optimal linear transformation from the initial representation
space in R to a low-dimensional feature space in R™ based on our selected sep-
aration measure results.from projecting the input vectors z onto m eigenvectors
corresponding to the m largest eigenvalues of the separation matrix SX. These
optimal vectors/direction can be obtained from a sufficiently rich training set
and can be updated if needed. Note that the idea of multi-scale dimensionality

reduction can be applied to multi-scale classification systems regardless of the
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criterion used for basis selection, e.g. it can be used on the pyramidal wavelet
transform, balanced or unbalanced wavelet packet tree, or local trigonometric

functions.

2.3.4 Separability and Redundant Dictionaries

Although all of our discussion has been limited to complete and orthogonal
dictionaries of bases, the idea of separability-based multi-scale basis design can
also be applied to non-orthogonal and redundant dictionaries. In particular, if
the initial multi-scale signal representation is obtained through linear operations
or “projections” [57], one can absorb the matrix A into these operations. For
example, if projections of the signals onto a set of multiscale “templates” {¢;,i =
1,...,n} are used, then application of A to these templates, {AT¢;,i = 1,...,m <
n}, provides a small number of “composite waveforms” on which the projections

of the input signals show the largest differences, i.e.

V = {Ui} = {< S, &; >} (2.3.54)

U = {w}=AV=Av{} ={<s,Ad; >} (2.3.55)

The original library of multi-scale basis functions can be a redundant dictionary
composed of wavelet packet bases, local sine/cosine functions, or families of
Gabor functions. Also “composite” signals generated using this method are task-
dependent and do not in general have any specific structure like the wavelet tree
structure. They can be stored as a set of multi-scale signal templates/vectors
to be used in signal projection and feature extraction processes.

For example if a set of Gabor functions ® with index set I is used as the

starting dictionary of basis functions

(t—d)?
20

b5, = exp (- ) X cos (2w f(t — d)) (2.3.56)
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Figure 2.9: Obtaining multiscale composite templates from 1-D Ga-
bor functions using linear combinations corresponding to rows of the
dimensionality reduction matrix A.

® = {¢,}r where T ={y}={(o,f,d)} (2.3.57)

and features are computed based on inner products or projections, then ac-
cording to (2.3.54) a small set of multiscale templates for classification can be
obtained based on linear combinations of Gabor wavelets according to the rows
of the matrix A. As Figure 2.9 shows, the resulting composite templates may
not be symmetric and may not resemble any known local basis. An alternative
way of applying the separability idea to redundant dictionaries is a greedy algo-
rithm similar to matching pursuit proposed by [57] or a sequential multi-scale
hypothesis testing technique [26].

We can call this method the discrimination or Separation Pursuit (SP)
method, which through a greedy sequential search algorithm similar to match-
ing pursuit, tries to suboptimally find the best decomposition for classification

purposes. The main difference between SP and MP is that SP uses a different
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criterion that needs to be evaluated on a set of prelabeled training functions F

rather than individual signals f € F.

Let F be a matrix whose columns are training signals/vectors of all L classes.
The problem is to find, from among all possible decompositions of F over a dic-
tionary of normalized waveforms/vectors {g, } er, a decomposition that results
in projection coeflicients with maximum discriminatory power. Like MP, define
R%f = f as the initial residue of decomposition. Let g,, € D . Like matching

pursuit at the k** iteration,
VfeF: Rff =< R*f v > g, + REY'f (2.3.58)
The above equation can be rearranged and written in vector form as

R*'F = R*F — g1 .R*F.g,, (2.3.59)

where R*F is the matrix of all residue vectors and
R'F, = ¢! R'F (2.3.60)

is the vector of projection coefficients. The iterative information extraction is
performed by successive selection of the most discriminating dictionary element

for the decomposition residue at each step and computing the new residual term

according to (2.3.59). The most discriminatory element of the dictionary can be

selected using any of the separability measures described in Section 2.2:
% = argmax., pJ (R*F.,) (2.3.61)

Fast numerical computation of the SP algorithm and its orthogonal version

parallels those of MP and can be implemented according to [57].
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Chapter 3

Multisource Soft Decision Integration

3.1 Introduction

After extracting multiscale discriminant features we need to find an effective
framework for decision making. Effective is meant here in the sense that in
the process of classification or recognition the system takes advantage of all the
relevant information which is explicitly or implicitly embedded in the feature
space. In fact it has been argued and shown that an important factor which
typically degrades the classification and recognition performance of most sys-
tems lies is the loss of information as a result of under-utilization of information
in the feature space [86]. This fact and the principle of least commitment sug-
gest utilizing soft decisions as a more informative representation of intermediate
decisions, and carrying soft decisions along until a crisp decision is required.

Consider a general pattern classification/segmentation problem with L dif-
ferent classes, based on m, possibly imprecise, sources with relative levels of
expertise denoted by a’s. Let {w;} be a set of arranged /ordered observations in
time or space. These observations may be obtained from sliding windows that
span the signal or image. For example, they may correspond to the successive
1-D windows used for speech recognition, or to the 2-D windows of an image
segmentation system.

Consider a collection of N examples {w;}¥, from L different, but known,

classes. Feature extraction is a mapping from signal space to feature space:

T:weQ—-XecR" (3.1.1)
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so the training set I' is a set of pairs

I, = {(z5l):i=1,...,Nand [; C[0,1]*} or

I'n = {(zi,):1=1,...,Nand [; € {1,2,...,L}} (3.1.2)

where I'; and I'j, correspond to training based on soft decisions or hard decisions
respectively. Equivalently, we let 7 = 2°(w;) denote measurements, e.g. dis-
criminant feature values or vectors, obtained from a source s. The soft classifier
is a map F(.), typically non-linear, from the feature space X to the points in

the “fuzzy” cube [0,1]F. Thus

d:®" — [0,1)F (3.1.3)

&(z) = & (3.1.4)

d? = d*(z;) is a decision based on measurement z; from source s. In general this
decision is a vector of size L, whose j*! element shows the decision (or in fuzzy

terms, the fit value) associated with class j:
& (2:) = [ (0, ¢5))en (3.0.5)

Thus, the classifier has L non-binary outputs, one for each class, where each
output takes values in [0, 1], Figure 3.1. Some authors put a constraint on the

summation of the soft decisions made for all classes:

L
> & (zici) =1 (3.1.6)
—
| These conditions restrict the decision points to a hyperplane in the L-dimensional
B decision space.
Now let d; = g({d},a; : s € S}) be the decision based on the consensus of

all sources, each of which may be imprecise with reliability a;. The decision
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Figure 3.1: Soft decisions for L classes are vectors in an L-
dimensional space.

integration is finding the best function g that, through effective combination of
the decisions obtained from the individual sources, based on a consensus rule,
achieves a more reliable result.

Based on the temporal or spatial arrangement and interrelationships of the
observations {w;}, one can define a notion of neighborhood or context area
around each window of observation. Let D; = D(w;) be the final decision about
event w; which is a function of the decisions obtained from other windows in
the context area of w;, and possibly other information Z, i.e. D; = h({d; : j €
N;},Z). Context-dependent classification and recognition involves the defini-
tion of function h based on a reasonable assumption about the interrelation of
observations within an area/interval.

In this chapter we first discuss the issue of similarity-based soft/fuzzy clas-
sification based on a single source. Then we talk about consensus of experts
through decision integration using objectively defined measures of the reliabil-
ity or importance of information sources. We incorporate the spatial/temporal

context information through defining a relevance function that describes the
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interrelationships among observations within a neighborhood.

3.2 Fuzzy Partitioning of Feature Space

Let X = {z} be a universe of discourse with generic elements denoted by z.

Membership in a classical set A of X is often viewed as a characteristic function
X4 X — {0,1} : such that x4(z)=1wz€c A (3.2.7)

which assumes that the set has precisely defined boundaries and each element
(i.e., each observed example) has either full or no membership in set A. This
assumption results in hard partitioning of the feature space, and as we will
discuss later, there is a loss associated with such partitioning.

A fuzzy set B is, on the other hand, characterized by a function fz which
associates with each z a real number in [0,1] that represents the “grade of
membership” of z in B. The closer the value of fg is to 1, the more = belongs
to set B. So, while in hard decision each observation is labeled as one of the
possible classes, soft classification attaches to each observed pattern a group of
membership grades. The fuzzy set membership functions simply but efficiently
encode a complete ordering among the set elements. Such orderings carry a lot
of information about the relative location of an observation/measurement in the
feature space with respect to clusters of prelabeled data. They are also useful
for discriminating between values in relation with a variety of semantics (e.g.
preference, uncertainty, or similarity) that a fuzzy set based representation may
bear in different tasks.

In this chapter our study of fuzzy memberships and soft decisions is mostly
related to grades of similarity and dissimilarity suggested by a group of experts
or classification resources. In this context the elements with membership 1 are

viewed as prototype elements of the fuzzy set, while other membership grades
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Figure 3.2: Hard partitioning (a) and soft partitioning (b) of the
feature space. ' '

estimate the closeness of the elements to the prototypes. An observation may
belong to a class to some extent and meanwhile belong to another class to
another extent, and membership grades are attached to quantitatively indicate
these extents. Such a partition is referred to as a fuzzy or soft partition of the
feature space. Formally, a fuzzy partition of a feature space is a family of fuzzy

sets {C;,7 =1,..., L} on universe X such that

VeeX 0<f, < 1 (3.2.8)
S fulz) > 0 (3.2.9)
rzeX
Y fule) = 1 (3.2.10)

In a multidimensional feature space the concept of fuzzy membership is
equivalent to soft /fuzzy partitioning of the space, where decision regions are not
separated by sharp hyperplanes, but there are transition or fuzzy areas between
any two decision regions. Figure 3.2 schematically shows how a soft/fuzzy par-

titioning of feature space may represent the memberships and similarities more
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realistically than a hard decision. This allows for classification information to

be utilized in subsequent analysis.

3.2.1 Learning Membership Functions

After considering the effectiveness of soft decisions, one has to devise systematic
approaches to training the classifier to form the required soft decision bound-
aries. Here we mention two major approaches to creating such membership
functions. The first method relies on probability measures of fuzzy events and

in particular on the so called fuzzy mean and fuzzy variance of a fuzzy set [86]:

* Z?:l fC(xi)xi

3.2.11
H= S ) ) (32.11)
. Yoy felwe) (s — ) (s — pf)
o= 3.2.12
‘ z?:l C(xi) ( )

Note that these definitions are different from their classical counterparts in that
each example contributes to the mean and variance of a class based on its partial
membership in that class.

After estimating the mean and variance based on a prelabeled training set,
and assuming that the cluster of points for each fuzzy set follows a normal

distribution, one defines a Gaussian-shaped membership function as [86]

Px(z)
fe() m where (3.2.13)
Pi(a) = L expl-1/2(c - u)TE (2 — )] (3:2.14)

Cr) PP i
Based on the same idea and using p} and X7 one can define other types of
membership functions, e.g. triangular, exponential, or trapezoidal.
It has been argued that including some of the mixed classes in the training set
with their corresponding best mixed labels helps in terms of better estimating

the mean and variance and therefore in the final performance. Including such
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Figure 3.3: Each node in the hidden layer of a MLP network forms
a “soft hyperplane” in the feature space: (a) a basic connection in
MLP, (b) the corresponding soft “hyperplane”
fuzzy cases in the process of training is sometimes referred to as a fuzzy training
method. Obviously, reasonable fuzzy training requires a methodology of defining
membership values for the training set.

An alternative approach to adaptively defining membership functions is to
use the nonlinear mapping characteristics of Multilayer Neural Networks (MLNN)
and supervised learning algorithms to learn multidimensional membership func-
tions based on a training set.

Consider a simple neural network with input layer X, connection weight
matrix W1, and step function non-linearity for hidden and output nodes Z. As
shown in Figure 3.3, each hidden node 7 in the first layer represents a hyperplane
WZXX in the space spanned by the input feature vectors. With sigmoidal non-

linearities at each node the hyperplane becomes a fuzzy hyperplane:

7 = Sigm(WT.X) where (3.2.15)
. 1

In a three-layer network these hyperplanes can be combined to form any
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Figure 3.4: Creating soft decision boundaries with neural networks:

(a) a two-layer neural network, (b) the corresponding decision region.
set of convex soft decision boundaries (see Figure 3.4). Also with three layers,
even non-convex fuzzy decision regions can be formed. This process of creating
decision regions is very similar to linear programming ideas, except that they
involve a mild form of non-linearity.

This neural network based approach provides a flexible framework for imple-
menting fuzzy training ideas. This type of training also requires the input-output
pairs for all training, including mixed/fuzzy examples for which one needs to
define a criterion for membership assignments. Note that this membership as-
signment has to be consistently and mathematically defined and applied to the
training sets. Including such examples in the training set provides the network
training algorithm with valuable information about the slope of the membership

function in the transition regions.

3.3 Multisource Soft Decision Integration

A number of different approaches have been proposed for analyzing information
obtained from several sources [52, 8, 34]. The simplest method is to form an

extended data/feature vector, containing information from all the sources, and
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treat this vector as the vector output of a single source. Usually, in such sys-
tems all similarities and distances are measured in the Euclidean sense. This
approach can be computationally expensive; it is successful only when all the
sources have similar statistical characteristics and comparable reliabilities. In
many application this assumption is not valid and therefore a more intelligent
alternative approach has to be taken. In fact there is a research field called
Consensus Theory that deals with finding consensuses, among members of a
group of experts/sources and studies desired and undesired characteristics of
consensus rules [7, 46].

Consider a consensus rule Cs for n data sources with probability measures

{plap% "'7p7TL}:
Cs : [P, S)]" = P(Q, 5) (3.3.17)

where P(2,5) is the space of all probability measures with o-algebra S. There
are several properties that are reasonable or desirable for a consensus rule, for

example:

o Marginalization Property (MP)
Cs((P1sP2; -, Pm)|T) = Cs(pr|T, p2|T's oo Pl T) (3-3.18)
o Null Set Property (NSP)
pi(X) = p2(X) = ... = pm(2) = 0 = Cs(p1, P2, -, P )(X) = 0 (3.3.19)
e Weak Setwise Function Property (WSFP)

Cs(p17p277pm)(X) = F(pl(X),pg(X), 7pm(X)>X) (3320)
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e Strong Setwise Function Property (SSFP), also called strong label neu-

trality or the context-free assumption
Cs(p1, 225, P )(X) = G(p1(X), p2(X); ., Pm( X)) (3.3.21)

In [7] the relationships among these properties are studied and the following
theorem is proved:

Theorem: Suppose there is a family of consensus rules {Cs} in ; then

1. MP is equivalent to WSFP,

2. (MP and NSP) is equivalent to SSFP

3. SSFP is achieved if and only if there exist non-negative numbers (weights)
{a1,...,an} with 3;0; = 1 such that for all o-algebras S with X € S and all
pi € P(Q,5),

Cs(p1: P25 s Pm)(X) = f;aipi(X) (3.3.22)

This summation represents the so called LInear Opinion Pool (LIOP), which
is one of the most commonly used consensus rules. This rule has a number of
advantages and disadvantages. It is simple, it yields a probability distribution,
and it has the MP and NSP properties. The weights {;} in this rule have an
intuitive interpretation of relative importance or reliability of sources. There are
also has some disadvantages; for example, the LIOP is not externally Bayesian,
i.e. an LIOP based decision maker does not necessarily satisfy Bayesian rules. In

order to avoid some of the shortcomings of LIOP, some authors have discussed

the application of the LoGarithmic Opinion Pool (LGOP)

Cs(p1, P2, P )(X) = 7 g& 1((;(())(()))):@

where )} ;a; = 1. It has been argued that the result of LGOP is unimodal

(3.3.23)

and less dispersed than that of LIOP. It is externally Bayesian, but it assumes
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the independence of sources. Also it has some disadvantages, e.g. it considers
“zero” opinions as vetoes, and it is computationally more complex than LIOP.
Because of the product form of this rule, the weighting factors in LGOP have
less intuitive interpretations.

One of the main problems with these consensus rules is the selection of
weights. The weights should represent an objective measure of relative impor-
tance and expertise of sources.

In part of our study we will use LIOP and LGOP for decision integration.
Our sources are multiscale features and their reliabilities are their normalized
discrimination powers.

In our analysis our decisions are based on similarity and dissimilarity mea-
sures rather than model-based probabilistic measures. In this context the con-
sensus rules are less restricted; for example, they do not have to provide prob-
ability distributions and they may not necessarily satisfy Bayesian rules. For
clarity, in the remainder of this section we explain our methodologies based on
a specific set of feature sets as sources with defined similarity and reliability
measures.

Following our projection-based feature extraction, each projection of the in-
put pattern onto a discriminant vector w; creates a resource for classification
information and therefore a decision axis with a certain level of reliability and
discriminatory power. The level of significance or reliability ¢; of the decisions
based on u; is directly related to the class separation along that axis which is

equal to the corresponding (normalized) eigenvalue in the LDA:

Ai

m
i=1 A

V(i w) € (A™ x UM™Y ;o = (3.3.24)

For any test vectorized input pattern/image ¢, we project it onto each of
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Figure 3.5: The raw distances between each test example and the
known clusters along each discriminant axis result in the soft decision
along that axis.

the top discriminant vectors u. Based on the distances between the resulting
coefficients ¢(u) and those of the existing templates ¥¢ stored in the database,

we estimate the level of similarity of the input image to each known class (see

Figure 3.5):
Vue U™ @ 4(u) =< ¢, u> (3.3.25)
VeeC : Audc) = |g(u) — ¥ (3.3.26)
r(dc) = 1——Lu) (3.3.27)

where 7,(¢, ¢) reflects the relative level of similarity between input ¢ and class
¢ according to source s = u which has reliability a,. Using our initial notation

for soft decisions, we can put the 7,(¢,c)’s into a decision vector

5 = [mu(é,)in (3.3.28)

Having determined our decision axis and the reliabilities, we can apply a
probabilistic or an evidential scheme of multi-source data analysis to combine
the soft decisions made based on the individual imprecise sources to obtain a
more precise and reliable final result. The normalized similarity measures (7’s)

indicate the proportions of evidence suggested by different sources. They can
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be interpreted as the so-called basic masses of evidence or they can be used as
rough estimates of posterior probabilities given each measurement. From this
stage on, a probabilistic or an evidential reasoning approach can be taken to
combine the basic soft decisions. A comparative study of various probabilistic
and evidential reasoning schemes is given in [52].

Similarly, working with distances as dissimilarity measures, one can combine
basic soft decisions, and incorporate the reliability of each source, to define a
reasonable measure of distance in the feature space. Although the most com-
mon measure used in the literature is Euclidean distance, as a more reasonable
measure we suggest a weighted mean absolute/square distance, with the weights

based on the discriminatory powers. In other words,

u(9,¢) i—c% (3.3.29)
D(¢,c) = z(j )(5u(¢, c) X ay) (3.3.30)
ueUlm

Therefore, for a given input ¢ the best match ¢® and its confidence measure is

¢ = argmin z{D(¢,c)} (3.3.31)
Conf(¢,c°) = 1—% (3.3.32)

where ¢ is the second best candidate. In this framework, incorporating collateral
information or prior knowledge and expectations from context becomes very
easy and logical. All we need to do is to consider each of them as an additional
source of information corresponding to a decision axis with a certain reliability

and include it in the decision process.

3.3.1 Incorporating Spatial/Temporal Context Information

Many signal/image processing tasks consist of local processing of data followed

by a combination of results obtained from the local windows. The windowing
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approach is sometimes used because of hardware limitations when considering
large data sets or because of non-stationarity of the data. Local decisions made
over small windows are myopic and are not reliable on their own. So one needs
to devise methods of resolving the ambiguity and fuzziness of local decisions
in a consistent way. In many segmentation/recognition tasks, sliding windows
form a set of ordered observations about the signal/pattern. These sliding 1-D
or 2-D windows may partially overlap each other. Also, in a multiresolution
analysis there are sliding windows of variable sizes and scales that cover various
parts of the signal. Based on the common coverage area of the windows one can
define degrees of relevance and interrelationship among a set of observations in
a neighborhood.

In our approach soft “decision vectors” computed for each block are in-
tegrated through weighted combination of decisions/votes obtained indepen-
dently from neighboring blocks. The alternative, viz. using large windows, is
not recommended because over larger windows signals are highly non-stationary
and the corresponding features result from averaging over heterogeneous micro-
structures and therefore are less reliable. Large windows provide less spatial
resolution, which is of great concern in segmentation of signals and images.

Our decision integration scheme combines context information from various
sources based on their degrees of relevance R. For example, in terms of tempo-
ral/spatial context we can write

Ywe Dw)= Y R(w,)D() (3.3.33)

W'EN,
where N; is a neighborhood around the point s and D(s) represents the decision
vector at s. For temporal processing this degree of relevance may correspond to

the overlap of intervals covered by adjacent time windows. Likewise, in terms
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of spatial context, assuming the information contained in each block about a

region is proportional to the area of their overlap, one can write

AW, 0 W.)

R(w,w') = AW,

(3.3.34)

where A(.) is a function representing the area of its argument. As the image is
analyzed by windows of size W in window shift steps of size w, the area contained
in each block W, centered at point w is partially covered by neighboring blocks
{W, :w' € N,} and contributes to their classifications. In the case of a 2-D

sliding window on an image, it can be shown that

R(w,w) = 1= (il +|jl)w/W + |ij](w/W)* for —W/w <i,j < W/w

D(w) = D(w)+ R(w,w") x D(w") (3.3.35)

where (z,7) = w — w'. Thus, after one complete scan of the image, the con-
tributions of all neighboring blocks are added, and a combined vote for each
macro-pixel of width w is obtained. Note that, following the principle of least
commitment, thus far we have expressed all “decisions” as real vectors and no
hard decision has been made.

Multi-resolution analysis of data (images) combines the results of classifi-
cations obtained at several scales. Classification is typically done from coarse
to fine. We start with the low-resolution data to perform classification and
use higher-resolution data when the confidence level obtained is not satisfac-
tory. The combination of decisions can be performed based on our assumption
about the spatial relevance function, using the fact that the windows on the low-
resolution signal are actually projections of larger areas on the high-resolution
view. In other words, one can combine decisions obtained at different scales

based on their discrimination power and relevance to each block. The final ma-
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jority votes and their confidence measures are based on the accumulation of soft
decisions within and across scales and the closeness of the best class candidates.

The combination of weighted soft decisions is less susceptible to error than
is each individual local vote. Note that the idea of soft decision propagation
and integration within and across scales is dual to the lateral inhibition between
decision units involved in one or several scales. The role of decision propagation
profiles is similar, but not identical, to the role of inhibition profiles; one is

democratic while the other is competitive.
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Chapter 4

Signal and Image Classification

4.1 Introduction

During the last three decades, there have been many studies of classification and
segmentation of signals and images. A variety of descriptors based on statisti-
cal, structural and spectral properties of the single or multidimensional signals
are utilized to form the best sets of discriminant features. Parametric methods
based on hidden Markov models [42] and Markov random fields [16], time/spatial
domain approaches based on higher order moments [62], co-occurrence and corre-
lation matrices [17], and frequency domain/filtering methods [38, 44] are among
the major suggested schemes.

Also, different families of multiscale decompositions including WT, WP and
Gabor filtering have been successfully applied to various classification and recog-

ition tasks [13, 51]. Most of the proposed multiscale approaches to classification
problems are based on decompositions, either independent of signal character-
istics or based on an energy or representation criterion.

Based on our analytical results in Chapter 2, our objective in this chapter
is show how adaptive discrimination based WP features can be used to de-
sign efficient and yet simple signal and image classification systems with very
small-dimensional feature vectors. To show the effectiveness of our ideas for
real signal and image classification and segmentation tasks, we will apply them
to Automatic Target Recognition (ATR) and texture segmentation tasks. In
these tests a set of real-aperture radar returns are used as examples of 1-D

signals and a set of standard textures are used as a framework for 2-D image
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classification/segmentation.

In the tests described in this and the following chapters we have used different
QMTF filters given in [2]; the results show that the choice of filters may have
minor effects on the intermediate results, but plays an insignificant role in the

final performance.

4.2 Classification of Radar Signatures

To show the effectiveness of the suggested feature extraction process in the dis-
crimination of one-dimensional signals, we applied it to the classification of radar
target signatures using the database provided as part of the ARPA University
ATR initiative. In this section, without going into details about the theory of
radar signatures, we use them as a framework for testing our scheme.

Millimeter Wave (MMW) Real-Aperture Radar (RAR) signatures play an
important role in automatic target recognition. Due to their high range reso-
lution, RAR signals can resolve tactical targets at ranges of several kilometers.
On the other hand MMW radar range profiles are very noisy and their dominant
peaks are sensitive to clutter and small changes in aspect angle. Therefore RAR
contains valuable information which is difficult to extract. It has been argued
that some of the difficulties may be overcome by using multiscale features.

The radar is transmitted in Right Hand Circular Polarization (RHCP) and
received both in RHCP and LHCP, so each RAR return consists of two images,
right-right (even) and right-left (odd) polarizations. The RAR data consists of
FFT magnitude range profiles for each of five different targets. There are a total
of 128 range profiles each with 128 resolution cells/samples. The targets are a
T-72 Tank, a ZIL truck, an ASTRO multiple missile launcher, a TZM, and a

BTR60 armored personnel carrier.
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Figure 4.1: Example of radar target signatures for five different
classes of targets.

There are four different views of each target: nose (0°), right side (90°), tail
(180°), and left side (270°) views. 80 radar returns from five different stationary
targets were used. For each target there are two radar returns for each of the
two polarizations and the four view angles. Since the targets are assumed to be
stationary, and in order to reduce noise, the average of every 32 channels was
used. The data is divided into training and test sets. Figure 4.1 shows examples
of such averaged signatures used in the classification test.

In these tests the idea of dimensionality reduction is applied to a two-level
balanced wavelet packet tree. For each subband/node, second and third central
moments are computed and {pq, us/u2} is used as a feature vector. Figure 4.2
illustrates the separated clusters for five classes of radar targets where only the
two most important features are used. All 16 radar signatures corresponding to

one target are considered to be in one class. As Figure 4.2 shows, classification
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Figure 4.2: Clusters of feature points corresponding to five different

classes of targets separated in the selected 2-D feature spaces: best

two features (top), second best two features (bottom).
can be performed easily even with linear classifiers, and the distance between
clusters allows us to achieve good classification results even in the presence of
small Gaussian noise. For more details about this dataset see [27].

In this test a simple neural network is used as a “soft classifier”. The network
has two input, three hidden and five output units for five classes of targets.
Results show about 1% error on the training set and about 2% on the test set.
The confusion matrix is shown in Table 4.1. The training and test sets were
similar because all targets were stationary and there were small changes across
channels. This example shows how one can design a very simple and efficient

classification system for a specific task.
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Targets || T-72 | ZIL | ASTRO | TZM | BTR60
T-72 20 0 0 0 0

ZIL 0 19 10 1 0
ASTRO || O 0 20 0 0

TZM 0 1 0 19 0
BTR60 || 0 0 0 0 20

Table 4.1: Confusion matrix in the radar signature classification test.

Figure 4.3: Some of the textures used in the classification experi-
ments.

4.3 Texture Classification

The effectiveness of the suggested basis selection is further illustrated by ap-
plying it to image texture classification tasks. The input data consists of ten
textured images shown in Figure 4.3. Feature vectors are computed from the
second and third central moments (y; and p3/ps respectively) of the image sub-
bands. Each of the training and test sets consists of about 100 image samples
of each texture, selected randomly from 512 x 512 texture images. Each tex-

ture sample is a 64 x 64 pixel image. Figure 4.4 shows the class separation
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Figure 4.4: Decomposition results: selected subbands and computed

class separabilities (left); increase in CCS with the number of features

(right).
obtained at each level of the selected WP decomposition. The figure also shows
the improvement obtained because of using both ps and p3. The significant ef-
fect of using these features on classification performance also suggests that tree
selection should not be based only on local energies (or second moments).

In Figure 4.5 some of the classification results for the ten textures in Figure
4.3 are given. Also their corresponding clusters in the best 3-D feature space
based on the suggested dimensionality reduction idea are shown. Classification
results are obtained based on class separation analysis and the suggested algo-
rithm. The four most important features are selected. A simple feed-forward
neural network [71, 49] with four input, eight hidden, and ten output units is
used for classification. In some stages of building the wavelet packet tree (Fig-
ure 4.4), energy and separation based criteria suggest different strategies for

extending the decomposition.
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Figure 4.5: Some of the classification results (left); clusters in the
selected 3-D feature space (right).

Finally, some tests on 90° and 180° rotated input textures are performed.
The classification errors increase by between 1% and 14%, depending on the
textures. This is partly due to the separability of the filters and partly because
of the basis selection algorithm. The algorithm by its nature looks for common
features among all examples of the same class as well as features that discrim-
inate examples in different classes. So if all examples of a directional texture
are selected from the same image, it is expected that the algorithm will pick up
some directionally sensitive features. In general, depending on the task, differ-
ent rotated versions of a directional texture may or may not be “defined” as the
same texture, and this has to be considered in the class separation analysis. To
test this idea, for each texture we included some rotated examples defined as
being in the same class, and we applied the same feature selection algorithm.
Although the rotated examples were not included in the training of the classi-
fier network, the resulting classification performance on rotated input textures
improved significantly, e.g. from about 96% to 98% for 64 x 64 windows.

Despite the simplicity of the system, the results are comparable to other
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recently published texture classification schemes [13]. Note that in this approach
the selection of basis/features in performed once for all intended classes whereas
in [13] for every input example the decision about the tree structure has to be
made on-line and separately. Also, since our suggested basis selection is based on
observations over a group of examples for each, class the resulting tree structure
is less susceptible to errors in the noisy examples.

In order to test the effect of windowing on class separability, we tested four
different window sizes, as shown in Figure 4.5. As expected, whenever we reduce
the window size for better localization, we lose class separation, which results
in less accurate or less certain local decisions. Thus the need for soft local

classification and context-dependent decisions is apparent.

4.4 Texture and Image Segmentation

For the texture segmentation tests the features are based on segmentation win-
dows, i.e. the central moments are computed over small windows on the de-
composed image. Because of the down-sampling involved in the transform, the
corresponding window sizes for the sub-bands at the k' level of the tree are
W/(2%). Therefore the depth of the tree is limited by the size of the input win-
dow and the nature of the signals to be classified. Also, the order of the filters in
filter bank implementations should be smaller than the window size to avoid the
dominance of window boundary effects on the resulting feature computation.
Figure 4.6 shows the segmentation results for three visually similar textures.
In the test a window size of 16 x 16 pixels, with 8-pixel overlap, is chosen and
decision integration is used. In this test we used a simple two-layer neural
network with just three input, four hidden, and three output units to build our

soft classifier. As this figure shows, results comparable to those of other texture

60




Figure 4.6: Example of a texture segmentation using a reduced two-
dimensional feature space: (left) original image, (right) segmentation
result.
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Figure 4.7: The clusters corresponding to three textures in the seg-
mented image, based on the separability criterion (top) and based
on an energy criterion (bottom).
segmentation schemés, including wavelet-based systems [38, 55], are obtained,
using a generic scheme of low complexity and with a small number of features.
Figure 4.7 compares the cluster separations in the feature space when the
best feature vectors are selected according to the suggested class separability
based linear map to those obtained using dominant energy based approaches.

As this example illustrates, with the same feature size the suggested method

provides a very good separation of classes.
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Chapter 5

Layout-Independent Document Page Segmentation

5.1 Introduction

Recent advances in information and communications technologies have increased
the need for, and therefore the interest in, automated processing of documents.
Efficient storage and transmission of documents as well as archiving and infor-
mation retrieval for document databases and “digital libraries” have become
important research issues.

Two important tasks of most document processing systems are page decom-
position and optical character recognition (OCR). For coding or understanding
a document it is essential to identify text, image and graphics regions, as a
physical segmentation of the page, in order to be able to process it appropri-
ately. For example, one must identify the text regions before applying OCR
algorithms, and identify graphics regions before attempting to interpret or vec-
torize them. Physical page segmentation may also be required for the task of
functional layout analysis, to identify the document’s type (e.g. journal, memo,
check, etc.) or to generate hypotheses as to the components’ roles and logical
functions (title, abstract, footnote, caption, signature, table, etc.). As part of a
source compression scheme one may consider a document image as a composite
source, decompose it into text, image and graphics sub-sources where each sub-
source has more “homogeneous” outputs, and design separate coding schemes
for each sub-source, based on appropriate fidelity criteria [14]; see Figure 5.1.

Page segmentation and layout analysis methods described in the literature

make use of well-known image processing tools which can be broadly classified
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TEXT: TITLES, CAPTIONS, EQUATIONS, .....

IMAGE/HALF_TONES GRAPHICS: CURVES, TABLES, ...

DOCUMENT CONVERSION
CAD Conversion, Half Toning, OCR

INPUT - PHYSICAL PAGE J
DOCUMENT [“SEGMENTATION TEXT STRINGS
IMAGE PR
DOCUMENT SOURCE COMPRESSION
GRAPHICS TEXTCODER
GRAPHIC CODER
IMAGE CODER OCR

Figure 5.1: The role of page segmentation in document image
processing.

as bottom-up and top-down [81]. Bottom-up tools, such as connected compo-
nent analysis [32], start from the pixel level and merge regions together into
larger and larger components (e.g. first characters, then words, text lines, para-
graphs, etc.). Top-down techniques apply a priori knowledge about the page to
hypothesize and split the page into blocks which are subsequently identified and
subdivided further. For example, one may first locate major columns and then
split them further into paragraphs, text lines, and eventually words. Examples
of algorithms which use a top-down approach include recursive projection profile
cuts [87, 84], run length smoothing and constrained run length [85]. In general,
most approaches use a combination (or hybrid) of top-down and bottom-up
techniques.

One method, described in [84, 50], uses projection profiles and an X-Y tree
representation of documents to exploit the fact that the components of printed
pages (e.g. text blocks, tables, figures) can often be bounded by rectangular
blocks. The root of the tree is the entire page and after iterated subdivision,
based on changes in the projection profiles, each rectangular block in the page
is represented by a node in the tree. This results in a hierarchical block segmen-
tation of the page.

The constrained run length algorithm starts from the binary image and re-
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places every string of contiguous 0’s (corresponding to white pixels) of length
less than a predetermined constant by a string of 1’s (i.e. black pixels) of the
same length [14, 85]. This binary smearing process is performed in both hor-
izontal and vertical directions. The final bit map is obtained from the logical
“AND?” of the two outputs. The vertical and horizontal constraint lengths are
determined from anticipated inter-component sﬁa,cing. Clearly these methods
are dependent on assumptions about component sizes, component proximity,
and page orientation. A survey of the most common techniques is contained in
[81].

Recently, a more flexible method of page segmentation based on analysis of
background white space has been explored by several authors [3, 64, 73]. The
scheme is based on tracking major white spaces between printed components to
identify region boundaries. This method is based on relatively few assumptions
and provides good results even for skewed pages or documents with complex
layouts. For identification of component type, some approaches use simple sta-
tistical tests to classify detected major blocks as text or non-text regions [84].
Black pixel density, black/white ratio or transitions, average vertical or horizon-
tal run lengths, and row-by-row cross-correlations [65] are some of the features
used in these post-classification stages.

Each of the above techniques relies to a different extent on prior knowledge
about the generic document layout structure, such as rectangularity of major
blocks, consistency in horizontal and vertical spacing, and independence of text,
graphic and image blocks, and/or assumptions about textual and graphical at-
tributes such as font size and text line orientation. Utilizing knowledge about
the layout and structure of documents results in simple, elegant and efficient

page decomposition systems but also limits the range of applicability of the al-
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gorithms. For example, methods based on projection profiles fail if the page
layout is complex, the page is skewed, or text strings on the page have different
orientations. There are methods of estimating and correcting the skew angle
[61, 4], but they have limited ranges and add to the complexity of the system.
Methods based on smearing or white spaces are sensitive to character sizes as
well as line and character spacing. They may also fail when text regions touch
images or are embedded in them.

In some applications it is desirable to have segmentation methods that do not
assume a priori knowledge about the content and attributes of text, or about the
boundaries of major blocks. Such approaches should be robust to skew, noise
and other degradation. Some of the difficulties, shown in Figure 5.2, which are
common in general classes of documents, and which make these goals hard to
attain include:

e Noise and degradation caused by copying, scanning, transmission or aging.
e Page skew and text lines with different orientations on the same page.
e Text touching or overlapping with image and graphics components.

e Combinations of varying text and background gray levels (e.g. inverted

text).

e Complex and irregular layout structures that are common especially in
non-technical documents. Document objects may not have rectangular or

even convex boundaries and may be embedded in one another.

e Curved lines or multi-column pages where text lines in the two columns

are not of the same size and/or are not aligned.

o Differences in language, font size and other textual attributes.
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Figure 5.2: Examples of difficult cases for document page decompo-
sition
See Figure 5.3, for example, where despite the fairly simple page layout,
the projection profile based system has difficulty because no line across the
page can separate text and image regions. Any of these problems may cause
failure of the previously described techniques, and it is not uncommon to see
combinations of the cases described above, on the same page. Based on these
observations, a texture-based segmentation method for extracting text has been

suggested by Jain et al. [45]. The approach uses multi-channel Gabor filters
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Figure 5.3: An example of a document with simple layout for which
projection profile based methods fail.

as the input features of a classifier whose outputs are directly used to identify
text. This method is computationally expensive and does not provide a means
for incorporating context information.

In this chapter, text, image and graphics regions in a document image are
described as three classes of textures. The idea can be justified by the fact that
humans can identify document objects easily even from low-resolution images or
from distant views of a document page. This shows that the physical segmenta-
tion of a document is not detail- or content-sensitive, and like texture segmen-
tation, is a low-level vision process. Given the following considerations, some of
the existing texture segmentation techniques [38, 43, 17] can be modified and

used to identify these regions on the page. One distinctive feature of this task, .
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compared to texture segmentation problems, is that there are large inter-class,
as well as intra-class, variations in the textural features. Text and graphics are
texturally quite different, but different images may also contain scenes of signifi-
cantly different textural structure, as is the case for texts of different fonts, sizes,
and even languages. The variabilities are even more pronounced for graphics.

An important observation about the human audio/visual recognition system,
which is the backbone of most artificial neural network models, is the improved
recognition power gained through interactions of simple computational units.
Each local process can be as simple as projection or filtering, passing through
simple non-linearities, etc. In addition, all decisions, at least in low-level vision,
are non-binary, highly context-dependent, and based on multi-scale representa-
tions of the input signals/images [83, 93]. With these motivations we search for
consistent multi-scale context dependent schemes based on soft local decisions.

Our method is based on the fact that there is some uncertainty associated
with the local decisions over small windows, due to the limited view of the signals
and/or to the randomness and ambiguity inherent in the problem, or even to the
presence of multiple classes, overlapped or adjacent, in the same window. Using
large windows is not recommended, because over larger windows the signals are
highly non-stationary and features computed based on heterogeneous micro-
structures are less reliable. Also, larger windows provide less spatial resolution,
which is of great concern in segmentation schemes.

In the document domain, image sub-blocks may contain text, image and
graphic sub-regions adjacent to, or overlapping, one another (Figure 5.4). Such
situations may occur on boundaries, where, for example, text lines come close
to or touch image regions, or when major text regions occur in an image or on

a graph. In such cases it is not appropriate, even for an optimally designed
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(a) (b) ©

Figure 5.4: Examples of image blocks for which there is no correct

hard decision: (a) text overlapped on an image, (b) both text and

graphics in a block, (c) both image and text in a block.
classifier, to make hard (binary) local decisions. These cases exhibit an inherent
fuzziness of class membership which does not come from the noise or random-
ness, and they support our claim that soft local decisions are more realistic
and efficient. The uncertainties reflected in soft decisions are then reduced by
propagating and integrating decisions made independently in the neighborhoods
within and across scales.

In this chapter we propose the utilization of multiscale representations in a
soft decision framework for the task of layout-independent physical page segmen-
tation. In an attempt to handle even the most difficult cases of segmentation, we
m@ke few assumptions about the document’s textual and graphical attributes
and layout structure. The system is designed so that as hypotheses about doc-
ument components are generated and verified, more domain-specific processing
may OcCCur.

The organization of the chapter is as follows: In Section 5.2 the pyramidal
wavelet transforms and their generalized form, wavelet packets, are introduced.
These transforms are used to compute the input feature vectors at different
scales/resolutions. In Section 5.3 we describe how multi-scale feature vectors

are used for “soft classification” of small windows and how the “propagation”
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and “integration” of those soft decisions, within and across scales, can improve
the overall classification and segmentation performance. Some issues about in-
corporating prior knowledge of structure (or a model of the document) and
the notion of “biased voting” are then addressed. Some comments about the
post-processing stages are given in Section 5.4. Page segmentation experiments,
showing the performance of the method, are then described in Section 5.5. Fi-
nally the results are discussed and some suggestions about possible variations

and future directions are made.

5.2 WP Decomposition of Document Pages

The fact that document objects (e.g. characters and lines) appear at multiple
scales and our belief that physical segmentation is a low-level vision process sim-
ilar to texture analysis suggest that the use of multi-resolution representations
is appropriate. There are several classes of multi-scale decompositions that seem
to be biologically plausible and that have been successfully employed in mod-
ern signal processing schemes. In this paper we use wavelet-based decomposi-
tions (Figure 5.5) because they provide perfectly reconstructible decompositions
through fast algorithms [56, 22]. For a given class of signals, wavelet packets
can be adaptively designed to obtain compact representations that meet a pre-
determined objective criterion [19]. Also the perfectly reconstructible multiscale
representation, employed in our system, can be used as part of a multi-scale doc-
ument compression scheme.

Following our discussions about efficient discriminant feature extraction in
Chapter 2, we build the tree in such a way that the spread of feature points in
each class becomes smaller and at the same time clusters become farther apart.

The feature vectors consist of central moments computed over local windows on
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Figure 5.5: An example of a pyramidal WT on a document page:
the original image (left); the wavelet decomposition (right).
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Figure 5.6: Clusters in the feature space may overlap; the three
clusters shown correspond to text, image and graphics subblocks in
the database.

different subbands.
Figure 5.6 shows three clusters of feature points corresponding to text, image
and graphics blocks in a database. The features are extracted based on the

maximum class separability criterion. Considering the nature of mixed classes,
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overlap of clusters may be inevitable. In the following experiments, a pyramidal

wavelet transform and separability-based wavelet packet trees are used.

5.2.1 Knowledge-based Post-processing

In some applications we may wish to incorporate constraints into our decision
based on a priori or derived knowledge about the domain. For example, we
may observe patterns of data that result from rules subject to physical con-
straints. In the case of document segmentation into text, graphics and image
components, regions are typically rectangular, text symbols are arranged along
straight lines, and small graphics and images within text regions are unlikely.
For more structured classes of documents, blocks such as the title, abstract and
page number are expected to be in specific regions of the page, and even to have
specific attributes and formats. In general these constraints are task-dependent.

Although such constraints are often considered in higher levels of processing,
one may also utilize them in the early stages of classification to get more reliable
results. In the context of the described majority vote method, this idea can
easily be fit into the system without increasing its complexity by a biased voting
scheme. Our expectation about observing a certain class of patterns in a certain
part of the scene is reflected in a biased vote in favor of a particular class over that
region. In this case the system does not start from an all-zero vote matrix Vi,
but at each position a small non-zero initial vote is already given to the class(es)
that have been frequently observed in that location. The “biased voting” can
be viewed as not starting from the middle of the fuzzy decision cube (i.e. the
most fuzzy point), but deviating from it in favor of one of the classes (in the
corners); see Figure 5.7.

The prior vote or decision bias for each macro-pixel can be computed from
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Figure 5.7: Fuzzy decision square: (a) when we make a one-shot
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the empirical distributions of document objects in the labeled documents of the

training set I':

Ve  Y,Ow) = Pr{C=cw} (5.2.1)
~ —1—ZI{L(7,w) =c}fore=1,2,....L
]PI ~y€er

where L(v,w) is the label of macro-pixel w derived from ground truth data, L is
the number of classes, and I{.} is the indicator function. This initial vote can
be used if the type or class of document is already determined by other means
or is known a priori.

The spatial patterns of combined soft decisions in vote matrices directly re-
flect the locations, shapes and classes of major blocks. In some cases, however,
obtaining a more precise segmentation requires some knowledge-based post-
processing to incorporate additional knowledge about the structure. In such
cases the spatial pattern of votes also provides a convenient starting point to
apply constraints and performs further analysis. The local nature of texture-
based segmentation of documents sometimes results in sparse mis-classified re-A

gions. For example, the textural characteristics of the leaves on a tree in the
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image part of a page may locally resemble, and therefore be classified as, text
elements. Some of these sparse mis-classifications are corrected after the de-
cision integration process, but in some cases higher-level and knowledge-based
post-processing may be needed. Certain rules and constraints can be consid-
ered, with different ranges of generality and therefore applicability. These rules
put restrictions on the absolute locations of document objects on the page and
their positions relative to each other. A stroke embedded in a text region should
be interpreted as a character, but the exact same pattern in the margin should
be interpreted as noise. Similarly, one might hypothesize that “small” blobs
labeled as graphics, as well as small text-like regions in an image block with
no collinearity between them, have been misclassified and therefore can be re-
labeled. Depending on how likely they are to be encountered in an application,
one can put restrictions on the shapes and minimum sizes of the labeled regions.
For example, one may make use of the fact that text elements tend to be orga-
nized into lines, and are typically left-justified in groups that fall into columns
of rectangular shape. Although restrictive, assumptions about the minimum
and maximum character sizes, as well as minimum sizes of image and graphical
objects, may be derived and utilized.

By applying these structural rules, one can hypothesize and remove logically
undesirable gaps and noise-like small blobs of misclassified regions. Similarly
one may complete and rectify region boundaries and fit them with polygons or
rectangles, to obtain a parametric layout representation consistent with derived
knowledge of the domain.

As an example, and without going into the details of imposing layout-specific
constraints in our experiments, we establish a structural hierarchy. It suggests

that a text region is typically uniform and contains no graphics or image com-
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ponent, but a graphic or image region may have subordinate text. The text
must, however, have a uniform background and extend over a relatively large
area with respect to the font size. These properties are enforced by applying
morphological operations of each type to filter out noise which is too small to
constitute a document component. Constraints on the sizes of regions, as de-
scribed in Section 5.1, are implemented using 3 x 3 morphological kernels. Given
a constraint on the size of a text region, we perform a closing operation on the
image, to eliminate regions which appear locally as text. For the image reso-
lution and window size used in the experiments described in the next section,
a six-step closing operation eliminates a majority of the noise regions. Since a
six-step closing operation is approximately the size of a capital “M” in a 9pt
font, we do not have to be concerned that larger text regions will be eliminated.
For text which actually appears as part of the image, higher-level constraints

must be used, if possible, to associate the text with the image.

5.3 Experiments

To show the effectiveness of the suggested soft decision integration method it

has been applied to document page segmentation.

5.3.1 Input Representation and Training Set

In the following experiments both wavelet transform and wavelet packet decom-
positions are used as input signal representations. In the first two examples,
features are computed from a two-level wavelet transform. At each level, only
detail subbands are used and there is one classifier for each scale. The result
of classification at the two scales are combined as described in Section 3.3. In
the other examples, features are selected using a separability measure on the

wavelet packet decomposition. For these experiments, six features that contain
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the highest classification information, based on the previously used separability
measure, have been selected and used.

The input data consist of several gray-scale document pages scanned at 200
dpi and the input features are the second and third central moments (y; and
ps) of the image subbands computed over small windows W on the decomposed
image.

The training set consists of about 200 samples from each of the text, image
and graphics sub-blocks. These 16 x 16 pixel sub-blocks are extracted randomly
from several document pages. In order to avoid over-training, a “validation”
set is used to test the performance of the network, after every ten iterations,
during the training stage. As training proceeds, errors on both the training
and validation sets decrease. Training is suspended as soon as the error in
the validation set starts increasing. If the desired performance is achieved, the
process stops; otherwise, part of the validation set is included in the training set

and training proceeds on the augmented training set.

5.3.2 Network Description and Training

In all of the experiments, multi-layer feed-forward neural networks are used
as the soft classifiers. The network comsists of six input, eight hidden, and
three output units. The input units are linear, whereas the hidden and output
units have sigmoid nonlinearities. A conjugate gradient method is used for fast
convergence of the supervised learning algorithm [88].

The three outputs correspond to text, image, and non-text non-image classes.
In other words, any sub-block not identified as text or image is considered as
“graphics”. Blank regions are detected separately in a straightforward way. The

outputs can take values in [0,1] and the network is trained in such a way that
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these outputs provide soft non-binary decisions about the class memberships of
the input image blocks. This is essential because, as mentioned above, small
regions may locally resemble more than one class, or the image sub-block may
be composed of text, image or graphics subregions. In such cases, during the
training, outputs corresponding to text, graphics and images are required to take
target values roughly in proportion to the fraction of block area they occupy.
Including such composite blocks in the training set results in better performance
on the boundaries. If a decision integration stage is used the result will be much
less sensitive to these adjustments.

Despite its significance, the effect of a suitable output representation is some-
times overlooked. In fact in some cases, such as design and training of ‘soft
decision based classifiers, the choice of output representation can be as impor-
tant as that of input representation. In this experiment, in order to provide
the learning algorithm with a consistent set of input-output pairs the following
procedure has been implemented: Assuming that the data in the training set
is labeled correctly and consistently, for any macro-pixel w and any class ¢ one

can compute the desired soft decision for class membership as

Yw € Q L(Texeet) () 3" I(Lab(z) = ¢) (5.3.2)
IW[ zeW

i.e., the relative number of pixels in the window labeled as ¢. This form of target
value computation is consistent with our assumption about spatial relevance. It
is also a suitable means of determining soft local decisions when mixed classes are
present in the window, e.g. overlapped and adjacent text and image components
in the area covered by W. These labeled examples are the basis for learning the

fuzzy membership functions in our multidimensional feature space.
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5.4 Results and Discussion

The decision integration scheme described in this chapter has been used to
identify text, images, and graphics regions. We have tested our approach on
a number of document images which are difficult for other approaches due to
multiple scales and complex (but not unusual) layout of the components.

Figure 5.8: For this example feature vectors are computed from the wavelet
transform with two levels of decomposition. The example shows the advantage
of using decision integration in identifying major document blocks. In this image
we have a skewed page with multiple columns where the text lines of the different
columns are not aligned, the image is surrounded by text, and there are two text
fonts/sizes on the page.

Figure 5.9: This is the same example that was shown in Figure 5.3. In
this test we have used only two features extracted from the wavelet packet
decomposition of the document images in our database; the features are selected
based on the aforementioned separability criterion. This is an example of a page
with different font sizes and non-rectangular object boundaries.

Figure 5.10: This example shows the effectiveness of the suggested scheme
for cases where image and text regions are very close to each other and regions
do not have rectangular or even convex boundaries. For this example the re-
sults of prescribed post-processing based on morphological operations are also
illustrated.

Figure 5.11: This example shows a very difficult scenario where text is
embedded in the image, i.e. where different classes of objects are overlapped.

Even in this case our method provides good results.
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Figure 5.8: Page segmentation results for a document image. (From
left to right): original image, two-level wavelet decomposition, seg-
mentation without decision integration, segmentation with decision
integration. Dark gray and light gray represent image and text areas

respectively.
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Figure 5.10: An example of a difficult a segmentation: irregular
and non-convex image boundary very close to text. (a) Original im-
age; (b) segmentation without post-processing; (c) result after post-
processing; (d) final segmentation.

(@) b)

Figure 5.11: An example of a difficult segmentation: text embedded
in an image.
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5.5 Conclusions

Our experiments have shown that good page segmentation results can be ob-
tained using context information through propagation and integration of soft
decisions based on multiscale features. The improvement resulting from de-
cision integration is significant when confident hard local decisions cannot be
made because of poor features, poor resolution, windowing considerations, noise
and/or the inherent fuzziness of the classification task. Very good performances
have been obtained on complex document layouts, using simple feature sets and
classifiers. A majority of the calculations and decisions are made independently
and in parallel without any iterative stages. They are therefore well adapted to
distributed and parallel algorithms and architectures, which promise robust and
fast implementation.

As mentioned earlier, the physical segmentation process is typically part of a
larger system and, depending on the application, it may be followed by a func-
tional decomposition module in a document understanding or source encoder
system. This work can be extended in a number of directions. For example,
one may estimate the text font and text line orientation for all blocks labeled
as text, in order to prepare them for OCR algorithms. Also, one can find para-
metric representations of labeled regions referenced to the page so that their
logical identities can be defined or searched for in a database. Other feature
vectors such as multi-channel Gabor filters, co-occurrence matrices, or sets of
document-specific features, such as black pixel densities or black/white transi-
tions, can be explored to produce accurate local decisions. The basic idea of
incorporating context information through integrating soft local decisions can

be applied to other image and signal segmentation tasks.
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Chapter 6

Automatic Face Recognition

6.1 Introduction

Inspired by humans’ ability to recognize faces as special objects, and motivated
by the increased interest in commercial applications of automatic face recog-
nition as well as the emergence of real-time processors, research on automatic
recognition of faces has become very active. Studies about the analysis of hu-
man facial images have been conducted in various disciplines. These studies
range from psychophysical analysis of human recognition of faces and related
psychovisual tests [5, 23] to research on practical and engineering aspects of
computer recognition/verification of human faces and facial expressions [91] or
race/gender classification [9, 35].

The problem of Automatic Face Recognition (AFR) is a composite task that
involves detection and location of faces in a cluttered background, facial feature
extraction, subject identification, and verification [74, 15]. Depending on the na-
ture of the application, e.g. image acquisition conditions, size of database, clut-
ter and variability of the background/foreground, noise, occlusion, and finally
cost and speed requirements, some of the subtasks become more challenging
than others.

Detection of a face or group of faces in a single image or a sequence of images,
which has applications in face recognition as well as video conferencing systems,
is a challenging task and has been studied by many researchers [40, 15, 92]. Once
the face image is extracted from the scene, its gray level and size are usually

normalized before storing or testing. In some applications, such as identification




of passport pictures or mug-shots, conditions of image acquisition are usually so
controlled that some of the preprocessing stages may not be necessary.

One of the most important components of an AFR system is the extraction
of facial features, which attempts to find the most appropriate representation of
face images for identification purposes. The main challenge in feature extraction
is to represent the input data in a low-dimensional feature space in which points
corresponding to different poses of the same subject are “close” to each other and
“far” from points corresponding to instances of other subjects’ faces. However,
there is a lot of within-class/subject variation due to differing facial expressions,
head orientations, lighting conditions, etc., which makes the task more complex.

Closely tied to the task of feature extraction is the intelligent and sensible
definition of similarity between test and known patterns. The task of finding a
relevant distance measure in the selected feature space, and thereby effectively
utilizing the embedded information to accurately identify human subjects, is
one of the main challenges in face identification. In this chapter we focus on the
feature extraction and face identification processes.

Typically, each face is represented using a set of gray-scale images/templates,
a small-dimensional feature vector, or a graph. There are also various proposals
for recognition schemes based on face profiles [90] and isodensity or depth maps
[36, 60]. There are two major approaches to facial feature extraction for recog-
nition in computer vision research: holistic template matching based systems,
and geometrical local feature based schemes and their variations [15].

In holistic template matching systems each template is a prototype face
or face-like gray-scale image or an abstract reduced-dimensional feature vec-
tor which has been obtained through processing the face image as a whole.

Low-dimensional representations are highly desirable for large databases, fast
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adaptation, and good generalization. Based on these needs, studies have been
performed about the minimum acceptable image size and the smallest number
of gray levels required for good recognition results [74]. Reduction in dimension-
ality can also be achieved using various data compression schemes. For example,
representations based on Principal Component Analysis (PCA) [18, 48, 80, 66]
and Singular Value Decomposition (SVD) [77] have been studied and extensively
used for various applications. It has also been shown that the nonlinear mapping
capability of multilayer neural networks can be utilized and the internal/hidden
representations of face patterns which, typically, are of much lower dimension-
ality than the original image, can be used for race/gender classification [9, 35].
Some of the most successful AFR schemes are based on the Karhunen-Loeve
Transform (KLT) [48, 66], yielding so-called eigenfaces. In these methods the
set of all face images is considered as a vector space and the eigenfaces are sim-
ply the top principal components of this “face space”; they are computed as
eigenvectors of the covariance matrix of the data.

In geometrical feature-based systems one attempts to locate major face com-
ponents or feature points in the image [21, 58, 69, 76]. The relative sizes of and
distances between the major face components are then computed. The set of
normalized size and distance measurements constitutes the final feature vec-
tor for classification. One can also use the information contained in the feature
points to form a geometrical graph representation of the face that directly shows
the sizes and relative locations of major face attributes [58]. Most geometrical
feature-based systems involve several steps of window-based local processing, fol-
lowed by iterative search algorithms, to locate the feature points. These methods
are more adaptable to large variations in scale, size and location of the face in

an image but are more susceptible to errors when face details are occluded by
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objects, e.g. by glasses, by facial hair, due to facial expressions, or by variations
in head orientation. Compared to template/PCA based systems, these methods
are computationally more expensive. Comparative studies of template versus
local feature-based systems can be found in [15, 9, 67]. There are also vari-
ous hybrid schemes that apply the KLT and/or template matching idea to face
components and use correlation-based search to locate and identify facial feature
points [9, 66]. The advantage of performing component-by-component matching
is improved robustness against head orientation changes, but its disadvantage
is the complexity of searching for and locating the face components.

The human audio/visual system, as a powerful recognition model, takes great
advantage of context and auxiliary information. Inspired by this observation one
can devise schemes that can consistently incorporate context and collateral in-
formation, when and if they become available, to enhance its final decisions.
Incorporating information such as race, age and gender, obtained through inde-
pendent analysis, improves recognition results [66]. Also, since face recognition
involves a classification problem with large within-class variations, caused by
dramatic image variations in different poses of the subject, one has to devise

methods of reducing or compensating such variability, e.g.

1. For each subject store several templates, one for each major distinct facial
expression and/or head orientation. Such systems are typically referred to

as view-based systems.

2. Use deformable templates along with a 3-D model of a human face to
synthesize virtual poses and apply the template matching algorithm to

the synthesized representations [94].

3. Incorporate such variations in the process of feature extraction.
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In our experiments, we take the third approach and keep the first method
as an optional stage that can be employed depending on the complexity of the
specific task. Our approach is to use holistic LDA-based feature extraction
for human faces followed by evidential soft decision integration for multisource
data analysis. This method is a projection-based scheme of low complexity
that avoids any iterative search or computation. In this method both off-line
feature extraction and on-line feature computation can be done at high speeds
and recognition can be done almost in real time. Our experimental results
show that very reliable recognition performance can be achieved with very low
complexity and small numbers of features.

The organization of this chapter is as follows. In Section 6.2, we provide an
objective study of multi-scale features of face images in terms of their discrim-
inating power. In Section 6.3 we propose a holistic method of projection-based
discriminant facial feature extraction through LDA of face images. We also
make a comparative study of the features obtained using the proposed scheme
and the ones employed in compression-based methods such as PCA/KLT. In
Section 6.4 we address the task of classification/matching through multi-source
data analysis and combining soft decisions from multiple imprecise information
sources. Finally, based on the reliability of the basic decisions, we propose a
task-dependent measure of similarity in the feature space, to be used at the
identification stage. All the experiments in this chapter are based on the appli-
cation of LDA to the original image, but the ideas can be extended to multiscale

representations.
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6.2 Linear Discriminant Analysis of Facial Images

As highly structured 2-D patterns, human face images can be analyzed in the
spatial and/or the frequency domain. These patterns are comprised of compo-
nents that are easily recognized at high levels but are loosely defined at low
levels of our visual system [59, 23]. Each of the facial components/features has
a different discriminatory power for identifying a person or the person’s gender,
race or age. There have been many studies of the significance of such features
using subjective psychovisual experiments [5, 23].

Using objective measures, in this section we propose a computational scheme
for evaluating the significance of different facial attributes in term of their dis-
criminatory potential. The results of this analysis can be supported by subjec-
tive psychovisual findings. To analyze any representation V', where V' can be
the original image, its spatial segments, or transformed images, we provide the
following framework.

First, we need a training set composed of a relatively large group of subjects
with diverse facial characteristics. The appropriate selection of the training set
directly determines the validity of the final results. The database should contain
several examples of face images for each subject in the training set and at least
one example in the test set. These examples should represent different frontal
views of subjects with minor variations in view angle. They should also include
different facial expressions, lighting and background conditions, and examples
with and without glasses. It is assumed that all images are already normalized
to m x n arrays and they only contain the face regions and not much of the
subjects’ bodies.

Second, for each image/subimage, starting with the two-dimensional m X n

array of intensity values I(z,y), we construct the lexicographic vector expansion

87




¢ € R™*". This vector corresponds to our initial representation of the face.
Thus, the set of all faces in the feature space is treated as a high-dimensional
vector space.

Third, by defining all instances of the same person’s face as being in one class
and the faces of different subjects as being in different classes, for all subjects
in the training set, we establish a framework for performing a cluster separation
analysis in the feature space. Also, having labeled all instances in the training
set and having defined all the classes, we compute the within- and between-class
scatter matrices, i.e. S,, and S, respectively. Then we can use any of the class

separability measures of Chapter 2. For example

Ji = Sep(V) =tr(SM) (6.2.1)

T3 = tr(Sy)/tr(Sy) (6.2.2)

can be considered. In this test Jy = JZ is our measure of the Discriminatory
Power (DP) of a given representation V. As mentioned above, the representation
may correspond to the data in its original form (e.g. a gray-scale image), or it
can be based on a set of abstract features computed for a specific task.

For example, through this analysis we are able to compare the DP’s of dif-
ferent spatial segments/components of a face. We can apply the analysis to
segments of the face images such as the areas around the eyes, mouth, hair,
chin, or combinations of them. Figure 6.1 shows a separation analysis for hori-
zontal segments of the face images in the database. The results show that the
DP’s of all segments are comparable, and that the area between the nose and the
mouth has more identification information than other parts. Figure 6.2 shows

that the DP of the whole image is significantly larger than the DP’s of its parts.
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Figure 6.1: Variation of the discriminatory power of horizontal seg-
ments of the face defined by a window of fixed height sliding from
top to bottom of the image.
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Figure 6.2: Variation of the discriminatory power of a horizontal
segment of the face that grows in height from the top to the bottom
of the image.

Using wavelet transforms [19, 56, 22] as multi-scale orthogonal representa-
tions of face images, we can also perform a comparative analysis of the DP’s
of subimages in the wavelet domain. Different components of a wavelet de-
composition capture different visual aspects of a gray scale image. As Figure
6.3 shows, at each level of decomposition there are four orthogonal subimages

corresponding to

o LL: The smoothed, low-frequency variations.

o LH: Sharp changes in the horizontal direction, i.e. vertical edges.
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Figure 6.3: Different components of a wavelet transform, capturing
sharp variations of the image intensity in different directions, have
different discriminatory potentials. The numbers represent the rela-
tive discriminatory power.

e HL: Sharp changes in the vertical direction, i.e. horizontal edges.

e HH: Sharp changes in non-horizontal/non-vertical directions, i.e. other

edges.

We applied the LDA to each subimage of the WT of the face and estimated
the discriminatory power of each subband. Figure 6.3 compares the separations
obtained using each of the subbands. Despite their equal sizes, different subim-
ages carry different amounts of information for classification; the low-resolution
component is the most informative. The horizontal edge patterns are almost as
important as the vertical edge patterns, and their relative importance depends
on the scale. Finally, the least important component in terms of face discrimi-
nation is the fourth subband, i.e. the slanted edge patterns. These results are
consistent with our intuition and also with subjective psychovisual experiments.

One can also apply this idea to study the importance of facial components




for gender or race classification from images.

6.3 Discriminant Eigenfeatures for Face Recognition

In this section we propose a new algorithm for face recognition that makes use of
a small, yet efficient, set of discriminant eigentemplates. The analysis is similar
to the method suggested by Pentland et al.[66, 80], which is based on PCA and
KLT. The fundamental difference is that in our system eigenvalue analysis is
performed on the separation matrix rather than the covariance matrix.

Human face images as two-dimensional patterns have a lot in common and
are spectrally very similar. Therefore, considering the face image as a whole, one
expects to see important discriminant features that have low energies. These
low-energy discriminant features may not be captured in a compression-based
feature extraction scheme like PCA, or even in multi-layer neural networks,
which rely on minimization of average Euclidean error. In fact, there is no
guarantee that the error incurred by applying the compression scheme, despite
its low energy, does not carry significant discriminatory information. Also, there
is no reason to believe that for a given compression-based feature space, feature
points corresponding to different poses of the same subject will be closer (in
Euclidean distance) to each other than to those of other subjects. In fact it has
been argued and experimentally shown that ignoring the first few eigenvectors,
corresponding to the top principal components, can lead to a substantial increase
in recognition accuracy [66, 63]. Therefore the secondary selection from the PCA
vectors is based on their discriminatory power. But one could ask, why do we
not start with a criterion based on discrimination rather than representation
from the beginning, to make the whole process more consistent?

The KLT/PCA approach provides us with features that capture the main
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directions along which face images differ the most, but it does not attempt to

reduce the within-class scatter of the feature points. In other words, since no
class membership information is utilized, examples of the same class or different
classes are treated in the same way. LDA, however, uses the class membership
information and allows us to find eigenfeatures and therefore representations in
which the variations among different faces are emphasized, while the variations
of the same face due to illumination conditions, facial expression, orientation
etc. are de-emphasized.

According to this observation, and based on the results that follow, we believe
that for classification purposes, LDA-based feature extraction seems to be an
appropriate and logical alternative to PCA, KLT, or any other compression-
based system which tries to find the most compact representation of face images.
Concurrently, but independently of our studies, LDA has been used by Swet and
Weng [78, 79] to discriminate human faces from other objects.

In order to capture the inherent symmetry of basic facial features and the
fact that a face can be identified from its mirror image, we can use the mirror
image of each example as a source of information [48]. Also, by adding noisy but
identifiable versions of the given examples, we can expand our training data and
improve the robustness of the feature extraction against small amount of noise
in the input. Therefore, for each image in the database we include its mirror 4

of its noisy versions, as shown in Figure 6.4. We thus have

& = {®,:5=1,2,...,Ns} (6.3.3)

O, = {5,685, (¢+v):i=1,2,..,Ng, v=[N(0,0%)]™"} (6.3.4)

where ¢7 and ¢? + v are mirror images and noisy versions of the i*" example of

subject s in the data base @, respectively. Also N is the number of subjects and
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Figure 6.4: For each example in the database we add its mirror image
and some noisy versions.

Ng is the number of examples per subject in the initial database. Following our
earlier observations, and having determined the separation matrix, we perform

eigenvalue analysis of the separation matrix 5 (®) on the augmented database:
eig{S®} = {,w)yi=1,.; Ns — 1, Ay > A } (6.3.5)

Now let A(™ and U™ represent the set of m largest eigenvalues of S(® and
their corresponding eigenvectors. As discussed in Chapter 2, U™ minimizes
the drop |Sep(X) — Sep(UTX)| in classification information incurred by the
reduction in the feature space dimensionality, and no other R® to R™ linear
mapping can provide more separation than U ) does.

Therefore, the optimal linear transformation from the initial representation
space in R® to a low-dimensional feature space in R™ based on our selected
separation measure results from projecting the input vectors ¢ onto m eigenvec-
tors corresponding to the m largest eigenvalues of the separation matrix S (@),
These optimal vectors/direction can be obtained from a sufficiently rich training
set and can be updated if needed.

The columns of U™ are the eigenvectors corresponding to the m largest
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Figure 6.5: Some of the top eigenpictures based on PCA (top) and
. LDA(bottom).

eigenvalues; they represent the directions along which the projections of the face
images within the database show the maximum class separation. As Figure 6.5
shows, unlike the KLT-based eigenfaces of the discriminant eigenvectors, these
vectors do not typically have face-like patterns and are not directly related to
our intuitive notions of isolated features of human faces such as eves, hair, chin,
etc.

Each face image in the database is represented, stored and tested in terms of
its projections onto the selected set of discriminant vectors, i.e. the directions

corresponding to the largest eigenvalues of S(%:
Vé®, € @, Vu € UM 1 ohs(u) =< 65, u > (6.3.6)
U = {W(u):Yue U™, I =1,.., N5} (6.3.7)

Although all images of each subject are considered in the process of training,

only one of them needs to be saved, as a template for testing. If a view-based
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approach is taken, one example has to be stored for each distinct view. Since
only the projection coefficients need to be saved, for each subject we retain the
example that is closest to the mean of the corresponding cluster in the feature
space. Storing the projection coefficients instead of the actual images is highly
desirable when large databases are used. Also, applying this holistic LDA to
multi-scale representations of face images, one can obtain multiscale discrimi-
nant eigentemplates. For example one can apply LDA to each component of the
" WT of the face images and select the most discriminant eigentemplates obtained
from various scales. This approach is more complex because it requires the WT
computation of each test example, but in some applications it may be useful, for
example when the DP of the original representation is not captured in the first
few eigenvectors, or when the condition of m < Ngasses — 1 becomes restrictive,
e.g. in gender classification.

After extracting our projection-based discriminant features, we apply the
multisource decision integration scheme of Chapter 3. In the process of decision
integration we will use the DP of each decision axis resulting from a projection
as a measure of its reliability. Then, for each presented face, we apply our
simplified distance measure of equation (3.3.30) to the resulting feature vector
to obtain a sorted list of the top candidates. Figure 6.6 illustrates distributions

of projection coefficients along various axes for a four-class case.

6.4 Experiments and Results

In our experiments, in order to satisfy the requirements mentioned above, we
used a mixture of two databases. We started with the database provided by
Olivetti Research Ltd. [75]. This database contains 10 different images of each

of 40 different subjects. All the images were taken against a homogeneous
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Figure 6.6: The distribution of projection coefficients along three
discriminant vectors with different levels of discriminatory power for
several poses from four different subjects.

background and some were taken at different times. The database includes
frontal views of upright faces with slight changes in illumination, facial expres-
sion (open/closed eyes, smiling/non-smiling), facial details (glasses/no-glasses),
and some side movements. Originally we chose this database because it contains
many instances of frontal views for each subject. Then, to increase the size of the
database, we added some hand-segmented face images from the Ferret database
[31]. We also included mirror-image and noisy versions of each face example in
order to expand the data set and improve the robustness of recognition perfor-
mance to image distortions. The total numbers of images used in training and
testing were about 1500 and 500 respectively. Each face was represented by a

50 x 60 pixel 8-bit gray-level image, which for our experiments was reduced to
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Figure 6.7: Distribution of feature points for male and female exam-
ples in the database.

25 % 30. The database was divided into two disjoint training and test sets. Using
this composite database we performed several tests on gender classification and
face recognition.

The first test was on gender classification using a subset of the database
containing multiple frontal views of 20 males and 20 females of different races.
The LDA was applied to the data and the most discriminant template was
extracted. Figure 6.7 shows this eigentemplate and the distribution of projection
coefficients for all images in the set. As Figure 6.7 shows, with only one feature
very good separation can be achieved. Classification tests on a disjoint test
set also gave 95% accuracy. As mentioned above, one can also apply LDA to
wavelet transforms of face images and extract the most discriminant vectors of
each transform component and combine multiscale classification results using 4
the proposed method of soft decision integration.

We then applied LDA to a database of 1500 faces, with 60 classes corre-
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Figure 6.8: A comparison of DP’s of the top 40 selected eigenvectors
based on PCA and LDA.

sponding to 60 individuals. Figure 6.8 shows the discriminatory power of the
top 40 eigenvectors chosen according to PCA and LDA. As Figure 6.8 shows,
the classification information of the principal components does not decrease
monotonically with their energy; in other words, there are many cases where
a low-energy component has a higher discriminatory power than a high-energy
component. The figure also shows that the top few discriminant vectors from
LDA contain almost all the classification information embedded in the original
image space.

Figure 6.9 shows the separation of clusters for ten poses of four different
individuals using the two most discriminatory eigenvectors or eigenpictures. As

Figure 6.9 indicates, the differences between classes (individuals) are emphasized

98




\

Figure 6.9: Separation of clusters in the selected 2-D feature space.
Four clusters correspond to variations of the faces of four different
subjects in the database.
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Figure 6.10: Cluster separation in the best 2-D feature space, based
on LDA (top) and based on PCA (bottom).

while the variations of the same face in different poses are de-emphasized. The
separation is achieved despite all the image variations resulting from the various
poses of each subject. Figure 6.10 shows the distribution of clusters, for 200

images of 10 subjects, in the best two-dimensional discriminant feature space and
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Figure 6.11: Cluster separation in the best 2-D discriminant feature
space for 20 different subjects.

in the best two-dimensional PCA-based space. Figure 6.11 shows the clusters
for 20 different subjects using the top two discriminant eigenvectors.

For each test face example, we first projected it onto the selected eigenvectors
and found the distance from the corresponding point in the 4-D feature space
to all of the previously saved instances. All distances were measured according

to equation (3.3.30) and the best match was selected. For the given database

excellent (99.2%) accuracy was achieved; see Table 6.1.

The simplicity of our system, the size of the database, and the robustness
of the results to small variations of the pose or noise show that our suggested
scheme is a good alternative approach to face recognition. It provides highly
competitive results at much lower complexity using low-dimensional feature

sizes.
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No. of No. of | Recogn. Rate | Recogn. Rate
Task Examples | Features | (Training Set) | (Test Set)
Face 2000 4 100% 99.2%
Recognition
Gender 400 1 100% 95%
Classification

Table 6.1: Summary of recognition rates.

6.5 Conclusions

The application of LDA to study the discriminatory power of various facial
features in the spatial and wavelet domains is presented. Also, an LDA-based
feature extraction scheme for face recognition is proposed and tested.

A holistic projection-based approach to facial feature extraction is taken
where eigentemplates are the most discriminant vectors derived from the LDA
of face images in a rich enough database. The effectiveness of the proposed
LDA-based features is compared with that of PCA-based eigenfaces. For clas-
sification a variation of evidential reasoning is used, in which each projection
becomes a source of discriminating information with reliability proportional to
its discrimination power. The weighted combination of similarity or dissimilar-
ity scores suggested by all projection coefficients is the basis for the membership
values.

Several results on face recognition and gender classification are presented,
in which highly competitive recognition accuracies are achieved with very small
numbers of features. The feature extraction can be applied to the WP represen-

tations of the images to provide a multiscale discriminant framework. In such
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cases the system becomes more complex at the expense of improving separability
and performance. The proposed feature extraction combined with soft classifi-

cation seems to be a promising alternative to other face recognition systems.
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Chapter 7

Conclusions

The combination of the theories of wavelet-based multiresolution analysis and
discriminant analysis in statistical pattern recognition provides us with pow-
erful and flexible frameworks for extracting discriminant features for pattern
recognition/verification and segmentation systems.

Multi-scale features can be built in the procesé of selecting or linearly com-
bining waveforms from a library of local basis functions with the objective of
obtaining largest class separability in the feature space. The original library or
dictionary of waveforms may be a combination of different classes of orthogonal
wavelets, Gabor functions and local trigonometric functions. For the case of
tree-structured orthogonal local bases such as wavelet packets and local trigono-
metric functions there are fast search algorithms to find the most discriminatory
basis, whereas for redundant dictionaries only suboptimal greedy search algo-
rithms are available. The resulting selection of local waveforms may not be a
complete basis for the signal space, as is required in function approximation
problems.

In many classification /recognition based systems decisions are based on mul-
tiple features or sources of information, where different features or sources have
different levels of reliability or impreciseness. The results of classification based
on incomplete, noisy or mixed data or sources of different reliabilities can be best
represented using soft decision vectors. Following the principle of least commit-
ment one needs to keep all intermediate results as soft decisions up to the last

step when a crisp decision may be needed. Soft decision boundaries and thereby
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fuzzy partitions of the feature space are obtained using the nonlinear mapping
of multilayer neural networks or distance-based similarity/dissimilarity scores.

In some applications it is possible to take advantage of multiple observations
in a spatial/temporal neighborhood or context area in the final decision making.
We investigated soft decision integration using a consensus rule which is a varia-
tion of a linear or logarithmic opinion pool with discrimination-based weighting
factors. Also, we enhanced the result by combining decisions in a context area
based on a relevance pattern. Decision integration can be implemented in a
probabilistic or evidential frame of reasoning.

We explored these ideas by testing them on a variety of applications, includ-

ing

Recognition of Real Aperture Radar returns

Classification and segmentation of texture images

Layout-independent segmentation of complex document pages

e Automatic face recognition

Despite the many differences among these applications, we consistently obtained
promising results using fundamentally similar ideas. In some applications, such
as face recognition and document page segmentation, we presented a completely
new approach to the problem, while in other cases (e.g. texture and radar
classification) we obtained competitive results using systems of lower complex-
ity based on our alternative discriminant feature extraction and classification
methodology.

Future Work: In this dissertation we have explored some aspects of context-

dependent pattern recognition systems using a toolbox containing multi-scale
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signal processing algorithms and multi-source decision integration methodolo-
gies. We hope that the results described in this dissertation will serve as a
basis for further investigations. This work seems to be extendible in different
directions from analytical and implementation points of view.

In the context of multi-scale discriminant basis selection further studies can
be done on an appropriate choice of a composite and redundant dictionary and
on developing/testing various greedy-type separation pursuit algorithms. Also,
separation-based local basis selection may have applications in noise suppression
and signal enhancement systems, where noise is defined as an additional class
and through projection-based methods, the system tries to find a multi-scale
representation in which there is maximum separation/difference between the
signal components and the noise.

Also, more extensive research on discrimination and relevance-based decision
integration using more sophisticated and efficient consensus rules is needed. This
may involve various combinations of probabilistic, evidential, fuzzy and neural-
based approaches in decision making.

Future work can also address new applications. One can test our proposed
scheme on many other signal and image processing tasks, such as recognition
of speech and acoustic signals or analysis of aerial or medical images. Also, in
some of the applications that we have explored there is room for extensions and
enhancements. For example, our results on page segmentation can be linked to
higher levels of knowledge-based post-processing for document understanding
and/or compression. In face recognition, our work can be extended to larger
and richer databases, covering wider variations of race, age, gender, etc. Such a
complete database can also be used for more detailed analysis of facial features

that can be compared and linked with psychophysical findings.
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Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. !
Jan 88). Mustcite at least the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitie. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than cne voiume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author{s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow

the name(s).

Block 7. Performing Organization Name(s) and
Addressies). Seif-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)

and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information notincluded elsewhere such as:
Prepared in cooperation with...; Trans. of...; To be
published in.... When a reportis revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.qg.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14, Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page. ~

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
asreport). An entry in this block is necessary if
the abstractis to be limited. If blank, the abstract
is assumed to be unlimited.
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